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General remarks 
1H-NMR spectra were recorded on a 300 MHz instrument. 13C-NMR spectra were recorded on 

the same instrument at 75 MHz. Chemical shifts (δ) are expressed in ppm downfield from TMS 

as internal standard. The letters s, d, t, q, and m are used to indicate singlet, doublet, triplet, 

quadruplet, and multiplet. Analytical HPLC analysis (Shimadzu LC20) was carried out on a 

C18 reversed-phase (RP) analytical column (150 × 4.6 mm, particle size 5 μm) at 37 °C using a 

mobile phase A (water–acetonitrile 90 : 10 (v/v) + 0.1% TFA) and B (MeCN + 0.1% TFA) at a 

flow rate of 1.5 mL/min. The following gradient was applied: linear increase from solution 30% 

B to 100% B in 8 min, hold at 100% solution B for 2 min. All solvents and chemicals were 

obtained from standard commercial vendors and were used without any further purification. 

Diazald was synthesized following a literature procedure.S1 The known products were 

characterized by 1H NMR, 13C NMR and mass spectrometry and identified by comparison of the 

spectra with those reported in the literature. The new compounds 7c and 7g were further 

characterized by HRMS. Proof of purity was obtained by 1H NMR and HPLC-UV 

spectroscopy.  

CAUTION: CH2N2 is a highly toxic, carcinogenic and very explosive gas. The reactions 

present herein should not be undertaken without stringent hazard assessment and proper safety 

precautions put in place. 

The photoreactor should be wrapped with aluminium foil to block the dangerous UV 

radiation. Protection glasses against UV radiation should be used during the operation of the 

system. 

 

Construction of the photoreactor 

The photoreactor consists of a 3 mL perfluoroalkoxy (PFA) coil surrounding a commercial 

germicide compact fluorescent UV light (254 nm) (UVL, Figure S1). The support for the coil 

was constructed using two round bottom flask cork supports (CSP, Figure S1) with 5.5 cm of 

diameter. The two supports (CSP) were connected using five metal sticks (STK, Figure S1). The 

PFA tube was coiled around the support (Figure S1). The compact fluorescent UV light was 

introduced through the top hole of the support. The lamp was kept cooled using an air cooling 

device on the bottom of the support (CD, Figure S2). The Support was wrapped with aluminium 

foil to block the dangerous UV radiation (Figure S2). 
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Continuous process to obtain -amino acids from -amino acids via the Arndt Eistert 
homologation sequence. 
 

Feed A (0.6 M solution of Diazald in MeOH) and feed B (1.2 M solution of KOH in 
MeOH/H2O 1:1) were pumped into a T-mixer (TM1) by two syringe pumps at flow rates of 200 
µL/min each (Asia Syrris). The combined mixture went through a PFA tubing (600 µL internal 
volume) and then further through the inner tube of the tube-in-tube reactor (TiT, room 
temperature). The mixture leaving the inner tube was quenched into conc. AcOH. Feed C (2 mL 
of a 0.32 M solution of N-Cbz-L-phenylalanine 1B and Bu3N in dry THF) and feed D (2 mL 
0.48 M solution of ethyl chloroformate in dry THF) were pumped into a T-mixer (TM2) by two 
further syringe pumps at flow rates of 75 µL/min each (Asia Syrris). The combined mixture 
went through a coil reactor (RT1, 1 mL internal volume, room temperature) and then further 
through the outer tube of the tube-in-tube reactor (TiT). The mixture leaving the outer tube went 
through a second coil reactor (RT2, 4 mL internal volume, room temperature) and then through 
a coil of gas-permeable Teflon AF-2400 (RT3, 2 mL internal volume). The degassed stream 
was mixed with an appropriated nucleophile from feed E (1:1 mixture of THF/H2O or EtOH) in 
a T-mixer (TM3) (Asia Syrris). The new mixture went through the photoreactor (RT4, 3mL 
internal volume) The product was collected in a flask. In the case that EtOH was used as 
the nucleophile, after collection was finished, the solvent was removed and the residue 
was purified by flash chromatography with AcOEt/petroleum ether as eluent. When 
H2O was used as a nucleophile, the THF was removed and the aqueous phase was 
extracted 3 times with EtOAc. The combined organic phases were dried over Na2SO4, 
filtered and concentrated and the residue was purified by flash chromatography with 
AcOEt/petroleum ether as eluent (1% of AcOH was added to the eluent) 

 

 

 

 

 

 

Scheme S1 Continuous process to obtain -amino acids from -amino acids via the Arndt Eistert
homologation sequence 
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Characterization data 
 

(S)-Benzyl (4-diazo-3-oxo-1-phenylbutan-2-yl)carbamate (3): mp: 85-87°C (lit.S2 84 °C); 

[α]D
20 -43.2 (c 1.02, CHCl3), lit.

S3 : [α]D
22 -42 (c 1.0, CHCl3); 

1H NMR (300 MHz, CDCl3) δ 

7.43 – 7.14 (m, 10H), 5.46 (d, J = 7.0 Hz, 1H), 5.23 (s, 1H), 5.10 (s, 2H), 4.51 (br d, J = 6.9 Hz, 

1H), 3.06 (d, J = 6.8 Hz, 2H); 13C NMR (75 MHz, CDCl3) δ 192.74, 155.72, 136.15, 136.01, 

129.34, 128.71, 128.56, 128.25, 128.08, 127.11, 67.06, 58.86, 54.64, 38.51; FT-IR (KBr, cm−1) 

3326, 3033, 2950, 2103, 1685, 1632, 1527, 1464, 1370, 1249, 1198, 1112880, 636, 575; Rf: 

0.39 (50% EtOAc/ petroleum ether). 

 

(S)-3-((tert-Butoxycarbonyl)amino)-4-phenylbutanoic acid (4a): 80 mg (0.29 mmol, 45%, 

white solid); mp: 99-101°C (lit.S4 104-107 °C); [α]D
20 -16.1 (c 0.99, CHCl3), lit.

S5 : [α]D
22 -16.0 

(c 0.98, CHCl3); 
1H NMR (300 MHz, CDCl3, mixture of rotamers) δ 9.23 (s, 1H), 7.49 – 7.08 

(m, 6H), 5.08 (s, 1H), 4.35 – 3.87 (m, 1H), 3.10 – 2.76 (m, 2H), 2.71 – 2.33 (m, 2H), 1.42 (s, J 

=  9H); 13C NMR (75 MHz, CDCl3, mixture of rotamers) δ 176.81, 156.33, 155.26, 137.60, 

129.39, 128.55, 126.63, 81.05, 79.68, 48.64, 40.29, 37.44, 28.32; FT-IR (KBr, cm−1) 3364, 

3026, 2979, 2923, 1686, 1519, 1430, 1415, 1366, 1265, 1164, 1082, 1049, 1026, 853; Rf: 0.27 

(50% EtOAc/ petroleum ether, 1% AcOH). 

 

(S)-3-(((Benzyloxy)carbonyl)amino)-4-phenylbutanoic acid (4b): 80 mg (0.26 mmol, 40%, 

white solid); mp: 116 - 118°C (lit.S6 116 - 118 °C); [α]D
20 -32.0 (c 1.20, CHCl3), lit

S3 : [α]D
22 -

36.0 (c 0.90, CHCl3); 
1H NMR (300 MHz, CDCl3) δ 7.53 – 7.00 (m, 10H), 5.40 – 5.24 (m, 1H), 

5.09 (s, 2H), 4.39 – 4.13 (m, 1H), 3.10 – 2.80 (m, 2H), 2.72 – 2.44 (m, 2H); 13C NMR (75 MHz, 

CDCl3, mixture of rotamers) δ 176.54, 155.71, 137.30, 136.34, 129.34, 128.64, 128.53, 128.16, 

128.08, 126.79, 66.78, 49.17, 40.13, 37.18; FT-IR (KBr, cm−1) 3329, 3030, 2919, 1694, 1532, 

1496, 1454, 1416, 1374, 1258, 1083, 772, 748; Rf: 0.35 (50% EtOAc/ petroleum ether, 1% 

AcOH); Rf: 0.15 (30% acetone DCM). 

 

(S)-Ethyl 3-(((benzyloxy)carbonyl)amino)-4-phenylbutanoate (4c): 118 mg (0.34 mmol, 

54%, white solid): mp:70-73 °C; [α]D
20 -14.0 (c 0.92, CHCl3); 

1H NMR (300 MHz, CDCl3) δ 

7.45–7.11 (m, 10H), 5.35 (d, J = 8.3 Hz, 1H), 5.09 (s, 2H), 4.33 – 4.21 (m, 1H), 4.16 (q, J = 7.1 

Hz, 2H), 3.52 – 2.76 (m, 2H), 2.60 – 2.40 (m, 2H), 1.27 (t, J = 7.1 Hz, 3H); 13C NMR (75 MHz, 
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CDCl3) δ 171.53, 155.59, 137.49, 136.52, 129.36, 128.57, 128.50, 128.07, 128.02, 126.68, 

66.59, 60.68, 49.36, 40.25, 37.53, 14.20; FT-IR (KBr, cm−1) 3347, 3033, 2980, 2905, 1776, 

1887, 1602, 1533, 1498, 1443, 1376, 1313, 1167, 1024, 872; HRMS (ESI) calcd for C20H24NO4 

[M+H]+, 342,17053, found 342,16996; Rf: 0.45 (5% EtOAc/ DCM). 

 

(R)-4-(Benzyloxy)-3-((tert-butoxycarbonyl)amino)butanoic acid (4d): 67 mg (0.22 mmol, 

34%, viscous yellowish oil); 1H NMR (300 MHz, CDCl3, mixture of rotamers) δ 7.41 – 7.26 (m, 

5H), 5.22 (br m, 1H), 4.53 (s, 1H), 4.16 (br m, 1H), 3.66 – 3.48 (m, 2H), 2.78 – 2.58 (m, 2H), 

1.45 (s, 9H); 13C NMR (75 MHz, CDCl3, mixture of rotamers) δ 176.14, 155.40, 137.82, 

128.40, 127.74, 127.62, 79.74, 73.21, 70.94, 47.09, 36.15, 28.34; FT-IR (KBr, cm−1) 3375, 

3058, 2978, 1740, 1681, 1454, 1294, 1247, 1096, 1026, 884, 776; HRMS (ESI) calcd for 

C16H24NO5  [M+H]+, 310,16545, found 310.16487; Rf: 0.33 (40% EtOAc/ petroleum ether, 1% 

AcOH). 

 

(S)-3-(((Benzyloxy)carbonyl)amino)butanoic acid (4e): 79 mg (0.33 mmol, 52%, White 

solid): mp: 99–102 °C (litS6 104–106 °C); [α]D
20 -14.5 (c 1.99, CHCl3), lit

S7: [α]D
25 -15.7 (c 1.04, 

CHCl3); 
1H NMR (300 MHz, CDCl3) δ 7.44 – 7.26 (m, 5H), 5.43 – 5.23 (m, 1H), 5.25 – 4.99 

(m, 2H), 4.22 – 4.02 (m, 1H), 2.68 – 2.46 (m, 2H), 1.28 (d, J = 6.7 Hz, 3H); 13C NMR (75 MHz, 

CDCl3) δ 176.53, 155.68, 136.35, 128.55, 128.17, 66.78, 43.79, 40.22, 20.29; FT-IR (KBr, 

cm−1) 3307, 3031, 2971, 2931, 1685, 1535, 1452, 14,17, 1251, 1088, 1061, 950, 693; Rf: 0.31 

(40% EtOAc/ petroleum ether, 1% AcOH). 

 

(R)-5-(Benzyloxy)-3-((tert-butoxycarbonyl)amino)-5-oxopentanoic acid (4f): 79 mg (0.24 

mmol, 37%, white solid): mp: 101-103 °C (litS4 96-99); [α]D
20 +1.6 (c 2.04, CHCl3); 

1H NMR 

(300 MHz, CDCl3, mixture of rotamers) δ 7.43 – 7.30 (m, 5H), 5.49 – 5.33 (m, 1H), 5.14 (s, J = 

8.4 Hz, 2H), 4.44 – 4.25 (m, 1H), 2.83 – 2.49 (m, 4H), 1.51 – 1.37 (m, 9H); 13C NMR (75 MHz, 

CDCl3, mixture of rotamers) δ 175.90, 171.13, 155.10, 135.52, 128.61, 128.37, 128.27, 79.88, 

66.63, 44.21, 38.10, 37.92, 28.32; FT-IR (KBr, cm−1) 3375, 2978, 2931, 1740, 1682, 1523, 

1366, 1247, 1199, 1057, 950, 692; HRMS (ESI) calcd for C17H24NO6 [M+H]+, 338,16036, 

found 338,15978; Rf: 0.42 (40% EtOAc/ petroleum ether, 1% AcOH). 

 

(R)-3-(((Benzyloxy)carbonyl)amino)-4-methylpentanoic acid (4g): 64 mg (0.24 mmol, 38%, 

white solid): mp: 89-91 °C; [α]D
20 -24.7 (c 3.14, CHCl3), lit

S8: [α]D
20 -16.5 (c 1.10, CHCl3), lit

S6: 
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[α]D
23 -33.6 (c 0.20, CHCl3);  

1H NMR (300 MHz, CDCl3) δ 6.94 – 6.80 (m, 5H), 4.83 – 4.70 

(m, 1H), 4.70 – 4.57 (m, 2H), 3.45 – 3.28 (m, 1H), 2.18 – 1.98 (m, 2H), 1.49 – 1.29 (m, 1H), 

0.46 (d, J = 6.3 Hz, 6H); 13C NMR (75 MHz, CDCl3) δ 177.26, 156.62, 136.92, 129.04, 128.60, 

67.57, 54.26, 37.67, 32.51, 20.28, 19.50; FT-IR (KBr, cm−1) 3334, 3036, 2958, 2872, 1689, 

1530, 1412, 1354, 1241, 1154, 1028, 929, 777, 731; Rf: 0.22 (40% EtOAc/ petroleum ether, 1% 

AcOH). 

 

(S)-2-(1-(tert-Butoxycarbonyl)pyrrolidin-2-yl)acetic acid (4h): 61 mg (0.27 mmol, 42%, 

white solid): mp: 101-104 °C (litS9 98-99 °C); [α]D
20 -39.0 (c 0.99, DMF), litS9: [α]D

20 -38.6 (c 

1.41, DMF); 1H NMR (300 MHz, CDCl3, mixture of rotamers) δ 8.90 (br s, J = 250.4 Hz, 1H), 

4.35 – 4.00 (m, 1H), 3.57 – 3.24 (m, 2H), 2.88 (br m, 1H), 2.34 (dd, J = 15.4, 9.4 Hz, 1H), 2.17 

– 1.99 (m, 1H), 1.94 – 1.69 (m, 3H), 1.46 (s, 9H); 13C NMR (75 MHz, CDCl3, mixture of 

rotamers) δ 176.91, 154.63, 80.04, 54.00, 46.64, 39.22, 31.21, 28.56, 23.59, 22.94; FT-IR (KBr, 

cm−1) 3307, 3031, 2968, 2932, 1684, 1535, 1452, 1418, 1300, 1251, 1117, 250, 730; Rf: 0.30 

(50% EtOAc/ petroleum ether, 1% AcOH). 
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Spectroscopic data 
 

1H NMR of (S)- benzyl (4-
diazo-3-oxo-1- phenylbutan-
2-yl)carbamate 3b 
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13C NMR of (S)-benzyl (4-diazo-3-oxo-1-phenylbutan-2-yl)carbamate 3b 
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1H NMR of (S)-3-((tert-butoxycarbonyl)amino)-4-phenylbutanoic acid 4a 
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13C NMR of (S)-3-((tert-butoxycarbonyl)amino)-4-phenylbutanoic acid 4a 
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1H NMR of (S)-3-(((benzyloxy)carbonyl)amino)-4-phenylbutanoic acid 4b 
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13C NMR of (S)-3-(((benzyloxy)carbonyl)amino)-4-phenylbutanoic acid 4b 
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1H NMR of (S)-ethyl 3-(((benzyloxy)carbonyl)amino)-4-phenylbutanoate 4c 
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13C NMR of (S)-ethyl 3-(((benzyloxy)carbonyl)amino)-4-phenylbutanoate 4c 
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1H NMR  of (R)-4-(benzyloxy)-3-((tert-butoxycarbonyl)amino)butanoic acid 4d 
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13C NMR of (R)-4-(benzyloxy)-3-((tert-butoxycarbonyl)amino)butanoic acid 4d 
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1H NMR  of (S)-3-(((benzyloxy)carbonyl)amino)butanoic acid 4e 
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13C NMR of (S)-3-(((benzyloxy)carbonyl)amino)butanoic acid 4e 
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1H NMR  of (R)-5-(benzyloxy)-3-((tert-butoxycarbonyl)amino)-5-oxopentanoic acid 4f 
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13C NMR of (R)-5-(benzyloxy)-3-((tert-butoxycarbonyl)amino)-5-oxopentanoic acid 4f 
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1H NMR  of (R)-3-(((benzyloxy)carbonyl)amino)-4-methylpentanoic acid 4g 
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13C NMR of (R)-3-(((benzyloxy)carbonyl)amino)-4-methylpentanoic acid 4g 

 

 

 

 

 

 

 

 

 

 

 

 

CbzHN
CO2H

4g



S27 
 

1H NMR  of (S)-2-(1-(tert-butoxycarbonyl)pyrrolidin-2-yl)acetic acid 4h 
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13C NMR of (S)-2-(1-(tert-butoxycarbonyl)pyrrolidin-2-yl)acetic acid 4h 
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