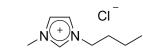

Cryo-solvatochromism in Ionic Liquids


Linpo Yu and George Z. Chen*

Department of Chemical and Environmental Engineering, and Energy and Sustainability Research Division, Faculty of Engineering, University of Nottingham, NOT 2RD UK. Fax: +44-115-9514115; Tel: +44-115-9514171; E-mail: george.chen@nottingham.ac.uk

Electronic Support Information

1. Molecular structures

[C₂OHmim]BF₄

[bmim]Cl

Scheme S1 Molecular structures of (left) the ionic liquid, $[C_2OHmim]BF_4$, as the donor solvent, and (right) the Cl⁻ source compound, [bmim]Cl.

2. General thermo-solvatochromic reaction

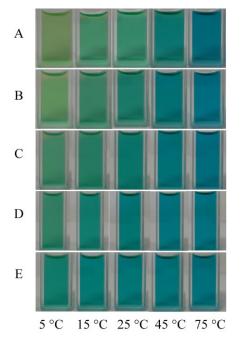
 $[\text{NiCl}_x([\text{C}_2\text{OHmim}]\text{BF}_4)_y]^{2-x} + m\text{Cl}^-$ (octahedral, yellow-green or green)

> heating cooling NiCl₄²⁻ + y[C₂OHmim]BF₄ (S1) (tetrahedral, blue)

where $0 \le x \le 4$, $2 \le y \le 6$, x + y = 6, and m + x = 4. These restrictions lead to a maximum of four octahedral complex ions. Charge balancing ions (CBIs: BF₄⁻, [bmin]⁺ and/or [C₂OHmim]⁺) are not shown in Reaction (S1). The type and number of CBIs in (S1) depend on the value of *x*, *y* and *m*. In Reaction (1), x = y = 3, m = 1, and the CBI is [bmin]⁺.

3. Enthalpy changes derived from DSC curves 3 to 5 in Fig. 2C and 2D (Table S1)

Solutions (in [C ₂ OHmim]BF ₄)	$\begin{array}{c} \Delta H \\ (J g^{-1}) \\ Cooling \end{array}$	$\begin{array}{c} \Delta H \\ (J g^{-1}) \\ \text{Heating} \end{array}$	ΔH^* (kJ mol ⁻¹) Cooling	ΔH^* (kJ mol ⁻¹) Heating
0.14 mol L ⁻¹ [bmim] ₂ NiCl ₄	2.01	2.02	59.1	59.4
$\begin{array}{l} 0.14 \text{ mol } L^{-1} \text{ [bmim]}_2 \text{NiCl}_4 \\ + 0.28 \text{ mol } L^{-1} \text{ [bmim]} \text{Cl} \end{array}$	3.98	4.06	59.1	59.3
$0.14 \text{ mol } L^{-1} \text{ [bmim]}_2 \text{NiCl}_4 + 0.70 \text{ mol } L^{-1} \text{ [bmim]} \text{Cl}$	3.42	3.81	59.0	59.3


* Estimated using density of [C₂OHmim]BF₄ (1.37 g mL⁻¹).

4. Cryochromic film and ionic liquid

Fig. S1 Photographs of a composite film $(2 \text{ cm} \times 2 \text{ cm})$ of $[C_2OHmim]BF_4$ - $[C_2OHmim]Cl-[bmim]_2NiCl_4$ -PVDF (mass ratio: 5:7:1:10) at (A) 22 °C, (B) –13 °C (in freezer). The insets show the ionic liquid solution at the respective temperatures. Note that the tiny spots in (B) were ice dusts.

5. Colours at different temperatures

Fig. S2 Photographs of 0.0207 mol L^{-1} [bmim]₂NiCl₄ in [C₂OHmim]BF₄ in the absence (row A) and presence (rows B to E) of [bmim]Cl at indicated temperatures and the following concentrations: (A) without [bmimCl]; (B) 0.04, (C) 0.10, (D) 0.20, and (E) 0.40 mol L^{-1} [bmim]Cl.