Supporting Information for

Polymeric templates and solvent effects: syntheses and properties of polymeric

iodoargentates containing solvated [Mn(4,4'-bpy)]²⁺ cations

Yali Shen, Jialin Lu, Chunying Tang, Fang Wang, Yong Zhang and Dingxian Jia*

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.

Table 51. Selected Dolid Lengths (17) and angles (deg) for 1				
Ag(1)–I(1)	3.0463(13)	Ag(1)–I(2)	2.8276(12)	
Ag(1)–I(3)	2.8976(12)	Ag(1)–I(4)	2.8322(12)	
Ag(2)–I(1)	3.1279(12)	Ag(2)–I(4)	2.8659(12)	
Ag(2)–I(5)	2.8306(11)	Ag(2)–I(6)	2.7861(12)	
$Ag(2)\cdots Ag(4)\#1$	3.1181(14)	Ag(3)–I(1)	3.0785(12)	
Ag(3)–I(2)	2.8478(12)	Ag(3)–I(6)	2.7815(11)	
Ag(3)–I(7)#1	2.7842(11)	Ag(3)···Ag(5)#1	3.1986(14)	
Ag(4)–I(1)#2	2.9743(12)	Ag(4)–I(2)	2.8640(12)	
Ag(4)–I(3)	2.8386(12)	Ag(4)–I(5)#2	2.7707(11)	
Ag(5)–I(3)	2.8455(12)	Ag(5)–I(1)#2	2.9583(12)	
Ag(5)–I(7)	2.7758(12)	Ag(5)–I(4)	2.9500(13)	
Mn(1)–O(1)	2.184(8)	Mn(1)–O(2)	2.147(6)	
Mn(1)–O(3)	2.138(7)	Mn(1)–O(4)	2.161(7)	
Mn(1)– $N(1)$	2.303(7)	Mn(1)–N(2)#3	2.314(7)	
I(1)–Ag(1)–I(2)	114.49(4)	I(1)-Ag(1)-I(3)	100.40(4)	
I(1)–Ag(1)–I(4)	101.38(3)	I(2)–Ag(1)–I(3)	107.68(4)	
I(2)–Ag(1)–I(4)	127.54(5)	I(3)-Ag(1)-I(4)	101.58(4)	
I(1)-Ag(2)-I(5)	106.76(4)	I(1)-Ag(2)-I(4)	98.69(3)	
I(4)–Ag(2)–I(5)	106.42(4)	I(1)-Ag(2)-I(6)	106.45(3)	
I(5)-Ag(2)-I(6)	111.17(4)	I(4)-Ag(2)-I(6)	125.41(4)	
I(1)-Ag(3)-I(6)	107.91(4)	I(1)-Ag(3)-I(2)	112.92(3)	
I(2)-Ag(3)-I(6)	110.82(4)	I(1)–Ag(3)–I(7)#1	102.25(4)	
I(6)-Ag(3)-I(7)#1	109.90(4)	I(2)–Ag(3)–I(7)#1	112.64(4)	

Table S1. Selected Bond Lengths (Å) and angles (deg) for 1

I(1)#2-Ag(4)-I(3)	110.13(4)	I(1)#2-Ag(4)-I(2)	97.83(4)
I(2)-Ag(4)-I(3)	108.31(4)	I(1)#2-Ag(4)-I(5)#2	112.77(4)
I(3)-Ag(4)-I(5)#2	111.04(4)	I(2)-Ag(4)-I(5)#2	115.99(4)
I(1)#2-Ag(5)-I(4)	112.81(4)	I(1)#2-Ag(5)-I(3)	110.39(4)
I(3)–Ag(5)–I(4)	99.99(4)	I(1)#2-Ag(5)-I(7)	105.58(4)
I(4)-Ag(5)-I(7)	105.17(4)	I(3)-Ag(5)-I(7)	122.82(4)
Ag(1)–I(1)–Ag(3)	58.19(3)	Ag(1)–I(1)–Ag(2)	61.86(3)
Ag(1)–I(1)–Ag(5)#1	122.11(3)	Ag(1)–I(1)–Ag(4)#2	123.02(3)
Ag(2)–I(1)–Ag(4)#1	61.40(3)	Ag(2)-I(1)-Ag(3)	63.07(3)
Ag(3)–I(1)–Ag(4)#1	99.28(3)	Ag(2)–I(1)–Ag(5)#1	94.26(3)
Ag(4)#1–I(1)–Ag(5)#1	67.11(3)	Ag(3)–I(1)–Ag(5)#1	63.95(3)
Ag(1)–I(2)–Ag(4)	68.31(3)	Ag(1)–I(2)–Ag(3)	63.31(3)
Ag(1)–I(3)–Ag(4)	67.70(3)	Ag(3)–I(2)–Ag(4)	127.57(4)
Ag(4)–I(3)–Ag(5)	70.47(3)	Ag(1)–I(3)–Ag(5)	67.92(3)
Ag(1)–I(4)–Ag(5)	67.37(3)	Ag(1)–I(4)–Ag(2)	67.70(3)
Ag(2)–I(5)–Ag(4)#1	67.64(3)	Ag(2)–I(4)–Ag(5)	135.06(4)
Ag(3)#2–I(7)–Ag(5)	70.24(3)	Ag(2)–I(6)–Ag(3)	71.33(3)
O(1)-Mn(1)-O(2)	88.4(3)	O(1)-Mn(1)-O(3)	90.9(3)
O(1)-Mn(1)-O(4)	175.3(3)	O(2)–Mn(1)–O(3)	177.7(3)
O(2)–Mn(1)–O(4)	88.6(3)	O(3)–Mn(1)–O(4)	92.3(3)
O(1)-Mn(1)-N(1)	87.6(3)	O(1)-Mn(1)-N(2)#3	88.0(3)
O(2)–Mn(1)–N(1)	88.9(2)	O(2)-Mn(1)-N(2)#3	93.0(3)
O(3)–Mn(1)–N(1)	88.9(3)	O(3)–Mn(1)–N(2)#3	89.2(3)
O(4)–Mn(1)–N(1)	95.9(3)	O(4)-Mn(1)-N(2)#3	88.6(3)
N(1)-Mn(1)-N(2)#3	175.1(3)		

Symmetry transformations used to generate equivalent atoms: #1 - x + 2, y + 1/2, -z; #2 - x + 2, y - 1/2, -z; #3 x + 1, y, z; #4 x - 1, y, z.

Ag(1)–I(1)	3.052(3)	Ag(1)–I(2)	2.800(3)
Ag(1)–I(3)#1	2.892(3)	Ag(1)–I(7)	2.910(3)
Ag(2)–I(1)	2.992(3)	Ag(2)–I(2)	2.776(3)
Ag(2)–I(3)	2.913(3)	Ag(2)–I(4)	2.935(3)
Ag(2)–Ag(6)#2	2.887(4)	Ag(3)–I(1)	2.930(3)
Ag(3)–I(4)	2.917(3)	Ag(3)–I(5)	2.904(3)
Ag(3)–I(6)#2	2.894(3)	Ag(3)–Ag(6)#2	2.898(4)
Ag(4)–I(1)	2.862(3)	Ag(4)–I(5)	2.898(3)

 Table S2. Selected Bond Lengths (Å) and angles (deg) for 2

Ag(4)–I(6)	2.837(2)	Ag(4)–I(7)	2.986(3)
Ag(5)–I(4)	2.859(2)	Ag(5)–I(5)	2.825(2)
Ag(5)–I(7)	2.871(2)	Ag(5)–I(8)	2.7403(19)
Ag(6)–I(3)#1	2.815(4)	Ag(6)–I(4)#1	2.935(3)
Ag(6)–I(6)	2.834(3)	Ag(6)–I(7)	2.821(3)
Ag(6)-Ag(2)#1	2.887(4)	Ag(6)-Ag(3)#1	2.898(4)
Mn(1)–O(1)	2.174(14)	Mn(1)–O(2)	2.192(11)
Mn(1)-O(3)	2.128(11)	Mn(1)-O(4)	2.107(12)
Mn(1)–N(1)	2.277(13)	Mn(1)–N(2)#4	2.325(14)
I(1)-Ag(1)-I(2)	104.94(9)	I(1)-Ag(1)-I(3)#1	103.83(9)
I(1)-Ag(1)-I(7)	100.96(9)	I(2)-Ag(1)-I(3)#1	128.79(11)
I(2)-Ag(1)-I(7)	107.11(9)	I(3)#1-Ag(1)-I(7)	107.80(9)
I(1)-Ag(2)-I(2)	107.15(9)	I(1)-Ag(2)-I(3)	106.12(9)
I(1)-Ag(2)-I(4)	104.39(9)	I(2)-Ag(2)-I(3)	115.84(10)
I(2)-Ag(2)-I(4)	107.09(10)	I(3)-Ag(2)-I(4)	115.35(9)
I(1) - Ag(3) - I(4)	106.47(9)	I(1) - Ag(3) - I(5)	103.87(8)
I(1) - Ag(3) - I(6) #2	112.68(9)	I(4) - Ag(3) - I(5)	107.74(9)
I(4) - Ag(3) - I(6)#2	112.83(8)	I(5) - Ag(3) - I(6)#2	112.63(9)
I(1) - Ag(4) - I(5)	105.75(8)	I(1) - Ag(4) - I(6)	110.49(9)
$\frac{I(1) - Ag(4) - I(7)}{I(5) - A_{1}(4) - I(7)}$	103.70(9)	I(5) - Ag(4) - I(6)	113.16(10)
I(5) - Ag(4) - I(7)	114.03(8)	I(6) - Ag(4) - I(7)	109.22(8)
I(4) - Ag(5) - I(4)	111.63(7)	I(4) - Ag(5) - I(7)	96.72(8)
I(4) - Ag(5) - I(8)	113.42(7)	I(5)-Ag(5)-I(7)	120.14(8)
I(5)-Ag(5)-I(8)	111.49(8)	I(7)–Ag(5)–I(8)	102.57(7)
I(3)#1-Ag(6)-I(4)#1	118.48(11)	I(3)#1–Ag(6)–I(6)	109.06(11)
I(3)#1-Ag(6)-I(7)	112.55(11)	I(4)#1-Ag(6)-I(6)	114.08(12)
I(4)#1-Ag(6)-I(7)	87.13(9)	I(6)-Ag(6)-I(7)	114.21(11)
Ag(1)–I(1)–Ag(2)	67.29(7)	Ag(1)-I(1)-Ag(3)	107.78(8)
Ag(1)–I(1)–Ag(4)	72.88(8)	Ag(2)–I(1)–Ag(3)	66.53(7)
Ag(2)-I(1)-Ag(4)	105.07(8)	Ag(3)-I(1)-Ag(4)	69.49(8)
Ag(1)–I(2)–Ag(2)	73.82(9)	Ag(1)#2–I(3)–Ag(2)	115.15(9)
Ag(1)#2–I(3)–Ag(6)#2	66.88(8)	Ag(2)–I(3)–Ag(6)#2	60.50(8)
Ag(2)-I(4)-Ag(3)	67.44(8)	Ag(2)–I(4)–Ag(5)	107.12(8)
Ag(2)–I(4)–Ag(6)#2	58.92(8)	Ag(3)–I(4)–Ag(5)	66.69(7)
Ag(3)–I(4)–Ag(6)#2	59.36(8)	Ag(5)–I(4)–Ag(6)#2	125.51(9)
Ag(3)–I(5)–Ag(4)	69.37(8)	Ag(3)–I(5)–Ag(5)	67.31(7)
Ag(4)–I(5)–Ag(5)	62.38(7)	Ag(3)#1–I(6)–Ag(4)	118.70(8)
Ag(3)#1–I(6)–Ag(6)	60.76(8)	Ag(4)–I(6)–Ag(6)	65.00(8)
Ag(1)–I(7)–Ag(4)	73.21(8)	Ag(1)-I(7)-Ag(5)	110.49(8)

Ag(1)–I(7)–Ag(6)	66.57(9)	Ag(4)–I(7)–Ag(5)	60.78(6)
Ag(4)–I(7)–Ag(6)	63.24(8)	Ag(5)–I(7)–Ag(6)	121.49(9)
Ag(5)–I(8)–Ag(5)#3	180.00(7)		
O(1)-Mn(1)-O(2)	171.1(5)	O(1)-Mn(1)-O(3)	91.5(5)
O(1)-Mn(1)-O(4)	95.3(6)	O(2)–Mn(1)–O(3)	86.9(5)
O(2)-Mn(1)-O(4)	93.5(6)	O(3)–Mn(1)–O(4)	89.4(5)
O(1)-Mn(1)-N(1)	88.5(5)	O(1)-Mn(1)-N(2)#4	85.5(5)
O(2)–Mn(1)–N(1)	93.9(5)	O(2)-Mn(1)-N(2)#4	85.7(5)
O(3)–Mn(1)–N(1)	174.9(5)	O(3)-Mn(1)-N(2)#4	90.4(5)
O(4)–Mn(1)–N(1)	85.4(6)	O(4)-Mn(1)-N(2)#4	179.2(6)
N(1)-Mn(1)-N(2)#4	94.7(5)		

Symmetry transformations used to generate equivalent atoms: #1 x+1, y, z; #2 x-1, y, z; #3 - x+1, -y+1, -z+2; #4 x-1/2, -y+3/2, z-1/2; #5 x+1/2, -y+3/2, z+1/2.

Table S3. Selected Bond Lengths (\AA) and angles (deg) for 3

			-
Ag(1)–I(1)	2.9444(10)	Ag(1)–I(2)	2.8576(10)
Ag(1)–I(5)#2	2.8688(10)	Ag(1)–I(6)#1	2.8385(10)
Ag(1)–Ag(5)#1	3.2088(13)		
Ag(2)–I(1)	2.9618(11)	Ag(2)–I(2)	2.8123(10)
Ag(2)–I(3)	2.8075(10)	Ag(2)–I(4)	2.8291(10)
Ag(3)–I(1)	2.9646(10)	Ag(3)–I(3)	2.8268(11)
Ag(3)–I(5)	2.8165(11)	Ag(3)–I(6)	2.8454(10)
Ag(4)–I(1)	2.9814(11)	Ag(4)–I(2)#2	2.8772(10)
Ag(4)–I(4)#1	2.8274(10)	Ag(4)–I(5)	2.8403(10)
Ag(4)–Ag(5)#1	3.1670(11)	Ag(5)–I(1)#2	2.9448(10)
Ag(5)–I(3)#3	2.8323(10)	Ag(5)–I(4)	2.7992(11)
Ag(5)–I(6)	2.8089(10)	Ag(5)–Ag(1)#2	3.2088(13)
Ag(5)-Ag(4)#2	3.1670(11)		
Mn(1)–O(1)	2.134(6)	Mn(1)–O(2)	2.173(5)
Mn(1)–N(1)	2.316(7)		
I(1)-Ag(1)-I(2)	112.79(3)	I(1)–Ag(1)–I(5)#2	98.22(3)
I(1)-Ag(1)-I(6)#1	111.29(3)	I(2)–Ag(1)–I(5)#2	109.59(3)
I(2)-Ag(1)-I(6)#1	114.33(3)	I(5)#2–Ag(1)–I(6)#1	109.40(3)
I(1)-Ag(1)-Ag(5)#1	56.99(2)	I(2)–Ag(1)–Ag(5)#1	142.49(3)
I(5)#2-Ag(1)-Ag(5)#1	107.68(3)	I(6)#1-Ag(1)-Ag(5)#1	54.94(2)
I(1)–Ag(2)–I(2)	113.61(3)		
I(1)-Ag(2)-I(3)	106.34(3)	I(1)–Ag(2)–I(4)	95.50(3)
I(2)–Ag(2)–I(3)	115.41(3)	I(2)–Ag(2)–I(4)	115.14(4)
I(3)-Ag(2)-I(4)	108.79(3)	I(1)-Ag(3)-I(3)	105.76(3)

I(1)-Ag(3)-I(5)	113.60(3)	I(1)-Ag(3)-I(6)	94.64(3)
I(3)-Ag(3)-I(5)	114.86(3)	I(3)-Ag(3)-I(6)	109.40(3)
I(5)-Ag(3)-I(6)	116.38(4)	I(1)-Ag(4)-I(2)#2	93.81(3)
I(1)-Ag(4)-I(4)#1	111.79(3)	I(1)-Ag(4)-I(5)	112.40(3)
I(2)#2-Ag(4)-I(4)#1	110.77(3)	I(2)#2–Ag(4)–I(5)	108.13(3)
I(4)#1-Ag(4)-I(5)	117.37(3)	I(1)-Ag(4)-Ag(5)#1	57.14(2)
I(1)#2-Ag(5)-I(4)	113.73(3)	I(1)#2-Ag(5)-I(6)	112.13(3)
I(3)#3–Ag(5)–I(4)	113.02(4)	I(3)#3-Ag(5)-I(6)	109.41(3)
I(4) - Ag(5) - I(6)	113.09(3)	I(1)#2-Ag(5)-Ag(1)#2	56.98(2)
Ag(1)-I(1)-Ag(2)	64.17(3)	Ag(1)–I(1)–Ag(3)	126.31(3)
Ag(1)-I(1)-Ag(4)	121.76(3)	Ag(1)–I(1)–Ag(5)#1	66.03(3)
Ag(2)–I(1)–Ag(3)	70.99(3)	Ag(2)–I(1)–Ag(4)	124.60(3)
Ag(2)–I(1)–Ag(5)#1	122.57(3)	Ag(3)–I(1)–Ag(4)	64.37(3)
Ag(3)–I(1)–Ag(5)#1	122.71(3)	Ag(4)–I(1)–Ag(5)#1	64.61(2)
Ag(1)–I(2)–Ag(2)	67.19(3)		
Ag(1)–I(2)–Ag(4)#1	99.70(3)	Ag(2)–I(2)–Ag(4)#1	99.55(3)
Ag(2)–I(3)–Ag(3)	75.28(3)	Ag(2)–I(3)–Ag(5)#4	99.18(3)
Ag(3)–I(3)–Ag(5)#4	101.29(3)	Ag(2)–I(4)–Ag(4)#2	95.28(3)
Ag(2)–I(4)–Ag(5)	100.51(3)	Ag(4)#2–I(4)–Ag(5)	68.51(3)
Ag(1)#1–I(5)–Ag(3)	97.52(3)	Ag(1)#1–I(5)–Ag(4)	94.74(3)
Ag(3)–I(5)–Ag(4)	68.10(3)	Ag(1)#2–I(6)–Ag(3)	96.24(3)
Ag(1)#2–I(6)–Ag(5)	69.24(3)	Ag(3)–I(6)–Ag(5)	100.50(3)
O(1)-Mn(1)-O(1)#5	180.0(3)	O(1)-Mn(1)-O(2)	87.1(2)
O(1)-Mn(1)-O(2)#5	92.9(2)	O(2)-Mn(1)-O(2)#5	180.000(2)
O(1)-Mn(1)-N(1)	87.5(2)	O(1)-Mn(1)-N(1)#5	92.5(2)
O(2)-Mn(1)-N(1)	89.9(2)	O(2)-Mn(1)-N(1)#5	90.1(2)
N(1)#5-Mn(1)-N(1)	180.000(1)		

Symmetry transformations used to generate equivalent atoms: #1 - x + 2, y + 1/2, -z + 3/2; #2 - x + 2, y - 1/2, -z + 3/2; #3 x, y - 1, z; #4 x, y + 1, z; #5 - x + 1, -y + 1, -z + 1.

Ag(1)-I(1)	2.938(4)	Ag(1)–I(2)	2.807(4)
Ag(1)–I(3)	2.928(4)	Ag(1)–I(4)	2.817(4)
Ag(1)-Ag(10)#1	3.251(6)		
Ag(2)–I(1)	2.912(4)	Ag(2)–I(3)	2.867(6)
Ag(2)–I(5)	2.794(8)	Ag(2)–I(12)#1	3.099(9)
Ag(3)–I(1)	2.985(4)	Ag(3)–I(5)	2.812(4)
Ag(3)–I(6)	2.843(4)	Ag(3)–I(7)	2.764(4)

Table S4. Selected Bond Lengths (Å) and angles (deg) for 4

Ag(4)–I(1)	2.980(4)	Ag(4)–I(2)	2.814(3)
Ag(4)–I(6)	2.868(3)	Ag(4)–I(8)	2.859(3)
Ag(5)–I(7)	2.766(5)	Ag(5)–I(8)	2.858(4)
Ag(5)–I(9)	2.993(5)	Ag(5)–I(10)	2.847(4)
Ag(6)–I(6)	2.863(3)	Ag(6)–I(8)	2.862(4)
Ag(6)–I(9)	2.977(4)	Ag(6)–I(11)	2.828(5)
Ag(7)–I(9)	2.947(5)	Ag(7)–I(10)	2.754(8)
Ag(7)–I(12)	3.184(8)	Ag(7)–I(13)	2.825(5)
Ag(8)–I(9)	2.940(5)	Ag(8)–I(11)	2.812(5)
Ag(8)–I(13)	2.924(4)	Ag(8)–I(14)	2.824(4)
Ag(9)–I(3)#2	2.976(7)	Ag(9)–I(12)	2.746(10)
Ag(9)–I(14)	2.682(8)	Ag(10)–I(3)#2	3.251(8)
Ag(10)–I(4)#2	2.663(7)	Ag(10)–I(12)	2.900(10)
Ag(10)–I(13)	2.828(6)	Ag(10)–Ag(1)#2	3.251(6)
Ag(10)#1–Ag(9)	2.834(6)		
Mn(1)–O(1)	2.13(2)	Mn(1)–O(2)	2.03(3)
Mn(1)–O(3)	2.157(17)	Mn(1)–O(4)	2.063(19)
Mn(1)–N(1)	2.16(2)	Mn(1)–N(3)	2.26(3)
Mn(2)–O(5)	2.21(3)	Mn(2)–O(6)	2.116(19)
Mn(2)–O(7)	2.13(3)	Mn(2)–O(8)	2.22(4)
Mn(2)–N(2)	2.14(3)	Mn(2)–N(4)#1	2.32(4)
I(1)-Ag(1)-I(2)	102.61(11)	I(1)-Ag(1)-I(3)	109.45(14)
I(1)-Ag(1)-I(4)	105.79(16)	I(2)-Ag(1)-I(3)	106.11(14)
I(2)-Ag(1)-I(4)	120.46(16)	I(3)-Ag(1)-I(4)	111.75(14)
I(1)-Ag(1)-Ag(10)#1	106.5(2)	I(2)-Ag(1)-Ag(10)#1	150.9(2)
I(3)-Ag(1)-Ag(10)#1	63.23(15)	I(4)-Ag(1)-Ag(10)#1	51.44(15)
I(1)-Ag(2)-I(3)	111.91(17)	I(1)-Ag(2)-I(5)	102.25(19)
I(3)-Ag(2)-I(5)	129.9(2)	I(1)-Ag(2)-I(12)#1	110.4(3)
I(3)-Ag(2)-I(12)#1	95.6(2)	I(5)-Ag(2)-I(12)#1	105.8(2)
I(1)-Ag(3)-I(5)	100.04(16)	I(1)-Ag(3)-I(6)	106.74(11)
I(1)-Ag(3)-I(7)	104.65(12)	I(5)-Ag(3)-I(6)	105.96(13)
I(5)-Ag(3)-I(7)	120.18(15)	I(6)-Ag(3)-I(7)	117.12(15)
I(1)-Ag(4)-I(2)	101.39(11)	I(1)-Ag(4)-I(6)	106.21(11)
I(1)-Ag(4)-I(8)	114.63(12)	I(2)-Ag(4)-I(6)	120.53(12)
I(2)-Ag(4)-I(8)	109.93(10)	I(6)-Ag(4)-I(8)	104.55(10)
I(7)-Ag(5)-I(8)	118.20(15)	I(7)-Ag(5)-I(9)	107.18(12)
I(7)–Ag(5)–I(10)	117.97(16)	I(8)-Ag(5)-I(9)	105.46(15)
I(8)–Ag(5)–I(10)	106.28(13)	I(9)-Ag(5)-I(10)	99.43(16)
I(6)-Ag(6)-I(8)	104.59(12)	I(6)-Ag(6)-I(9)	113.29(12)
I(6)–Ag(6)–I(11)	107.11(12)	I(8)-Ag(6)-I(9)	105.75(12)

I(8)–Ag(6)–I(11)	123.13(13)	I(9)–Ag(6)–I(11)	103.24(13)
I(9)–Ag(7)–I(10)	102.75(18)	I(9)–Ag(7)–I(12)	113.9(3)
I(9)–Ag(7)–I(13)	109.89(19)	I(10)–Ag(7)–I(12)	97.8(2)
I(10)–Ag(7)–I(13)	135.0(3)	I(12)–Ag(7)–I(13)	96.3(2)
I(9)–Ag(8)–I(11)	104.59(13)	I(9)–Ag(8)–I(13)	107.41(15)
I(9)–Ag(8)–I(14)	103.21(17)	I(11)–Ag(8)–I(13)	106.68(13)
I(11)–Ag(8)–I(14)	119.4(2)	I(13)–Ag(8)–I(14)	114.44(13)
I(3)#2–Ag(9)–I(12)	101.11(18)	I(3)#2–Ag(9)–I(14)	103.9(3)
I(12)–Ag(9)–I(14)	146.0(3)	I(3)#2–Ag(10)–I(4)#2	106.7(2)
I(3)#2–Ag(10)–I(12)	91.7(3)	I(3)#2–Ag(10)–I(13)	110.0(2)
I(4)#2–Ag(10)–I(12)	122.7(3)	I(4)#2–Ag(10)–I(13)	119.1(3)
I(12)–Ag(10)–I(13)	103.00(19)	Ag(1)–I(1)–Ag(2)	67.01(14)
Ag(1)–I(1)–Ag(3)	114.26(12)	Ag(1)–I(1)–Ag(4)	71.25(10)
Ag(2)–I(1)–Ag(3)	69.36(17)	Ag(2)–I(1)–Ag(4)	95.61(15)
Ag(3)–I(1)–Ag(4)	66.84(9)	Ag(1)–I(2)–Ag(4)	75.65(11)
Ag(1)–I(3)–Ag(2)	67.72(13)	Ag(1)–I(3)–Ag(9)#1	113.12(19)
Ag(1)–I(3)–Ag(10)#1	63.24(12)	Ag(2)–I(3)–Ag(9)#1	76.07(19)
Ag(2)–I(3)–Ag(10)#1	75.0(2)	Ag(9)#1–I(3)–Ag(10)#1	53.92(17)
Ag(1)–I(4)–Ag(10)#1	72.72(18)	Ag(2)–I(5)–Ag(3)	73.55(14)
Ag(3)–I(6)–Ag(4)	70.23(10)	Ag(3)–I(6)–Ag(6)	103.78(12)
Ag(4)–I(6)–Ag(6)	73.53(9)	Ag(3)–I(7)–Ag(5)	99.84(13)
Ag(4)–I(8)–Ag(5)	101.01(11)	Ag(4)–I(8)–Ag(6)	73.69(9)
Ag(5)–I(8)–Ag(6)	70.40(11)	Ag(5)–I(9)–Ag(6)	67.05(10)
Ag(5)–I(9)–Ag(7)	66.15(17)	Ag(5)–I(9)–Ag(8)	113.11(11)
Ag(6)–I(9)–Ag(7)	91.38(15)	Ag(6)–I(9)–Ag(8)	67.77(11)
Ag(7)–I(9)–Ag(8)	68.48(14)	Ag(5)–I(10)–Ag(7)	70.70(16)
Ag(6)–I(11)–Ag(8)	71.60(13)	Ag(2)#2–I(12)–Ag(7)	144.1(2)
Ag(2)#2–I(12)–Ag(9)	75.8(2)	Ag(2)#2–I(12)–Ag(10)	77.03(19)
Ag(7)–I(12)–Ag(9)	71.09(18)	Ag(7)–I(12)–Ag(10)	74.8(2)
Ag(9)–I(12)–Ag(10)	60.18(18)	Ag(7)–I(13)–Ag(8)	70.34(15)
Ag(7)–I(13)–Ag(10)	81.8(2)	Ag(8)–I(13)–Ag(10)	112.69(18)
Ag(8)–I(14)–Ag(9)	70.85(16)		
O(1)-Mn(1)-O(2)	86.2(10)	O(1)-Mn(1)-O(3)	170.8(10)
O(1)-Mn(1)-O(4)	83.7(9)	O(2)-Mn(1)-O(3)	86.0(9)
O(2)-Mn(1)-O(4)	94.3(11)	O(3)-Mn(1)-O(4)	92.1(8)
O(1)-Mn(1)-N(1)	91.1(8)	O(1)-Mn(1)-N(3)	94.2(9)
O(2)–Mn(1)–N(1)	89.4(11)	O(2)–Mn(1)–N(3)	179.0(10)

O(3)–Mn(1)–N(1)	93.5(7)	O(3)–Mn(1)–N(3)	93.7(8)
O(4)–Mn(1)–N(1)	173.4(9)	O(4)–Mn(1)–N(3)	86.7(11)
N(1)-Mn(1)-N(3)	89.6(11)	O(5)–Mn(2)–O(6)	94.7(17)
O(5)-Mn(2)-O(7)	87.3(17)	O(5)–Mn(2)–O(8)	88.7(17)
O(6)-Mn(2)-O(7)	176.0(15)	O(6)–Mn(2)–O(8)	95.1(18)
O(7)–Mn(2)–O(8)	88.5(12)	O(5)–Mn(2)–N(2)	176.2(17)
O(6)–Mn(2)–N(2)	89.1(14)	O(7)–Mn(2)–N(2)	88.9(13)
O(8)–Mn(2)–N(2)	91.7(12)	O(5)-Mn(2)-N(4)#1	93.3(18)
O(6)-Mn(2)-N(4)#1	90.9(17)	O(7)-Mn(2)-N(4)#1	85.4(11)
O(8)-Mn(2)-N(4)#1	173.5(12)	N(2)-Mn(2)-N(4)#1	85.9(12)

Symmetry transformations used to generate equivalent atoms: #1 x, y–1, z; #2 x, y+1, z.

D–H···A	d(D–H)	d(H···A)	$d(D \cdots A)$	<(DHA)
1				
O(4)−H(4A)···N(4)#1	0.83	1.92	2.742(10)	170.1
O(4)−H(4B)····N(3)#2	0.83	2.09	2.777(12)	141.0
3				
$O(4)-H(4A)\cdots O(1)$	0.82	2.16	2.964(9)	164.2
O(4)−H(4B)···N(2)#1	0.83	2.00	2.811(11)	167.1
O(2)−H(2B)···S(2)#2	0.83	2.97	3.764(6)	160.4
O(2)-H(2B)···O(3)#2	0.83	1.91	2.699(9)	157.8
O(2)–H(2A)····O(4)#3	0.83	1.92	2.704(9)	157.0

Table S5. Hydrogen Bond Lengths (Å) and Angles (deg) for 1 and 3

Symmetry transformations used to generate equivalent atoms: for 1: #1 - x + 1, y - 1/2, -z+1; #2 - x, y-1/2, -z+1. for 3: #1 - x + 1, y+1/2, -z+1/2; #2 - x + 1, -y+1, -z+1; #3 - x + 1, -y+2, -z+1

Fig. S1. Powder X-Ray diffraction pattern (red) of the polycrystalline sample of compound **1** and the simulated pattern (black) base on the single crystal data.

Fig. S2. Powder X-Ray diffraction pattern (red) of the polycrystalline sample of compound **2** and the simulated pattern (black) base on the single crystal data.

Fig. S3. Powder X-Ray diffraction pattern (red) of the polycrystalline sample of compound **3** and the simulated pattern (black) base on the single crystal data.

Fig. S4. Powder X-Ray diffraction pattern (red) of the polycrystalline sample of compound **4** and the simulated pattern (black) base on the single crystal data.

Fig. S5. IR spectrum of complex 1.

Fig. S6. IR spectrum of complex 2.

Fig. S7. IR spectrum of complex 3.

Fig. S8 IR spectrum of complex 4.

Fig. S9. Crystal structure of the cationic chain $\{[Mn(4,4'-bpy)(DMF)_3(H_2O)]^{2+},4,4'-bipy\}_n$ constructed by $\{[Mn(4,4'-bpy)(DMF)_3(H_2O)]^{2+}\}_n$ and 4,4'-bipy via π - π stacking interaction and N-H…O interaction in **1**.

Fig. S10. View of 1 along the c axis. The AgI₄ units are shown as blue tetrahedra. Hydrogen atoms are omitted for clarity.

Fig. S11. The $[Mn(4,4'-bpy)_2(DMSO)_2(H_2O)_2]^{2+}/DMSO/H_2O$ cationic layer connected via $O-H\cdots O$ and $O-H\cdots N$ intermolecular interactions in **3**.

Fig. S12. TG curves of compounds 1, 2, 3, and 4.