Supporting Information for

Four cobalt(II) coordination polymers with diverse topologies derived from flexible bis(benzimidazole) and aromatic dicarboxylic acids: Syntheses, crystal structures and catalytic properties

Xiao Xiao Wang^a, Baoyi Yu^b, Kristof Van Hecke^b, Guang Hua Cui*^a

^aCollege of Chemical Engineering, Hebei United University, 46 West Xinhua Road, Tangshan 063009, Hebei, PR China.

^bDepartment of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 S3, B-9000 Ghent, Belgium

*Corresponding author. E-mail: tscghua@126.com

XRPD analysis

After the catalytic degradation reaction, the resulting mixture was centrifuging, solid samples were washed with deionized water and air-dried. Then the samples were reused to degrade Congo red azo dye for the next process. The X-ray powder diffraction (XRPD) patterns for the complexes **1-4** are presented in (Fig. S3), As-obtained sample for first and second experiment for degradation Congo red are in good agreement with the corresponding simulated from single crystal X-ray data of four coordination polymers, respectively (**1-4**), indicating the phase purities of the complexes samples. So these MOFs stable enough for the degradation Congo red and can be recycled and reused twice(Table. S2).

- Fig. S1 The IR spectra for 1-4
- Fig. S2 TG curves for 1-4
- Fig. S3 X-Ray powder diffraction patterns of 1-4, the as-obtained sample after first(curves a) and second(curves b) experiment for degradation Congo red.
 Table S1 Selected bond lengths (Å) and angles (°) for complexes 1-4
- Table S2 recycled and reused twice experimental results of complexes 1-4 for the degradation Congo red after 130 min

(b)

(c)

(d)

Fig. S1 The IR spectra for 1-4

Fig. S2 TG curves for 1-4

(a)

(c)

(d)

Fig. S3 X-Ray powder diffraction patterns of 1-4

Parameter	Value	Parameter	Value
1			
Co(1)-O(2)	1.9365(15)	Co(1)-N(1)	2.0341(18)
O(2)-Co(1)-O(2)A	136.39(11)	O(2)-Co(1)-N(1)	106.78(8)
O(2)A-Co(1)-N(1)	103.18(7)	O(2)-Co(1)-N(1)A	103.18(7)
O(2)A-Co(1)-N(1)A	106.78(8)	N(1)-Co(1)-N(1)A	91.85(10)
2			
Co(1)-O(4)	1.924(3)	Co(1)-O(5)A	1.980(8)
Co(1)-N(1)	2.025(3)	Co(1)-N(3)	2.048(3)
Co(1)-O(6)	2.281(5)		
O(4)-Co(1)-O(5)A	124.6(3)	O(4)-Co(1)-N(1)	111.82(12)
O(5)A-Co(1)-N(1)	117.8(2)	O(4)-Co(1)-N(3)	102.83(16)
O(5)A-Co(1)-N(3)	93.4(2)	N(1)-Co(1)-N(3)	97.95(11)
O(4)-Co(1)-O(6)	71.2(2)	O(5)A-Co(1)-O(6)	87.0(2)
N(1)-Co(1)-O(6)	88.19(15)	N(3)-Co(1)-O(6)	172.78(16)
3			
Co(1)-N(1)	2.072(4)	Co(1)-O(2)	2.127(4)
Co(1)-N(3)A	2.082(4)	Co(1)-O(3)B	2.230(4)
Co(1)-O(4)B	2.104(4)	Co(1)-O(1)	2.237(4)
N(1)-Co(1)-N(3)A	103.29(17)	N(1)-Co(1)-O(4)B	95.19(15)
N(3)A-Co(1)-O(4)B	98.45(17)	N(1)-Co(1)-O(2)	88.73(15)
N(3)A-Co(1)-O(2)	149.80(17)	O(4)B-Co(1)-O(2)	108.06(15)
N(1)-Co(1)-O(3)B	151.61(15)	N(3)A-Co(1)-O(3)B	94.81(15)
O(4)B-Co(1)-O(3)B	60.22(14)	O(2)-Co(1)-O(3)B	86.29(14)
N(1)-Co(1)-O(1)	100.89(16)	N(3)A-Co(1)-O(1)	90.71(16)
O(4)B-Co(1)-O(1)	159.17(16)	O(2)-Co(1)-O(1)	59.58(14)
O(3)B-Co(1)-O(1)	100.56(15)		
4			
Co(1)-O(4)A	2.021(2)	Co(1)-N(4)B	2.097(3)
Co(1)-O(1)	2.098(2)	Co(1)-O(1W)	2.116(2)
Co(1)-N(1)	2.210(3)	Co(1)-O(2)	2.247(2)
O(4)A-Co(1)-N(4)B	101.04(10)	O(4)A-Co(1)-O(1)	108.47(9)
N(4)B-Co(1)-O(1)	150.06(9)	O(4)A-Co(1)-O(1W)	91.06(9)
N(4)B-Co(1)-O(1W)	95.24(9)	O(1)-Co(1)-O(1W)	89.28(9)
O(4)A-Co(1)-N(1)	91.07(10)	N(4)B-Co(1)-N(1)	86.09(10)
O(1)-Co(1)-N(1)	88.36(9)	O(1W)-Co(1)-N(1)	177.22(9)
O(4)A-Co(1)-O(2)	168.95(9)	N(4)B-Co(1)-O(2)	89.95(9)
O(1)-Co(1)-O(2)	60.48(8)	O(1W)-Co(1)-O(2)	89.10(9)
N(1)-Co(1)-O(2)	88.46(9)		

Table S1 Selected bond lengths (Å) and angles (°) for complexes 1-4

Symmetry transformation used to generate equivalent atoms: For 1: A, -*x*+1, *y*, -*z*+3/2. For 2: A, -*x*+3/2, -*y*+3/2, -*z*+1. For 3: A, -*x*, -*y*+1, -*z*+1; B, -*x*+3/2, *y*+1/2, *z*. For 4: A, *x*, -*y*+3/2, *z*+1/2; B, -*x*+2, *y*-1/2, -*z*+1/2.

 Table S2 recycled and reused twice experimental results of complexes 1-4 for the degradation Congo red after 130 min

Degradation	Complex 1	Complex ?	Complex 3	Complex 4
efficiencies	Complex I		Complex 5	Complex 4
First	87%	96%	56%	52%
Twice	86%	94%	53%	48%