Electronic Supplementary Information

Hg²⁺ ion-imprinted polymers sorbents based on dithizone-Hg²⁺ chelation for mercury speciation analysis in environmental and biological samples

Zhong Zhang^{a,d}, Jinhua Li^a, Xingliang Song^b, Jiping Ma^c, Lingxin Chen^{a,*}

^a Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Provincial Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China

^b School of Chemistry & Chemical Engineering, Linyi University, Linyi 276005, China

- ^c Key Lab of Environmental Engineering in Shandong Province, School of Environment & Municipal Engineering, Qingdao Technological University, Qingdao 266033, China
- ^d University of Chinese Academy of Sciences, Beijing 100049, China

* Corresponding author. Tel./Fax: +86 535 2109130.

E-mail address: lxchen@yic.ac.cn (L. Chen).

Figure S1. UV-vis spectra of dithizone alone (Control), and the dithizone with Hg²⁺, MeHg⁺ and EtHg⁺, respectively. The inset image shows dithizone with Hg²⁺, MeHg⁺ and EtHg⁺ from left to right.

Figure S2. (A) Adsorption kinetics curves of IIPs and NIPs for Hg^{2+} in aqueous solution, and (B) Pseudo-first-order, Pseudo-second-order, Elovich and intraparticle diffusion kinetic models for Hg^{2+} towards IIPs. Experimental conditions: Hg^{2+} concentration, 10 mg/L, V = 10 mL, polymer, 20 mg, room temperature.

Table S1. Specific surface area and other related data of Hg-IIPs and NIPs obtained by BET analysis.

IIPs	Specific	Cumulative pore	Average pore	Cumulative pore	
	surface area	volume	diameter	area	
	(m^{2}/g)	(mL/g)	(nm)	(m^{2}/g)	
Hg-IIPs	43.27	0.1758	9.42	90.23	
NIPs	22.92	0.0994	5.62	63.13	

Isotherm Model	Parameter	Hg-IIPs	NIPs
Langmuir	<i>R</i> ^{2(a)}	0.998	0.998
$\left(\frac{C_e}{C_e} - \frac{1}{C_e} - \frac{1}{C_e}\right)$	$Q_{\max}^{(\mathrm{b})}$	4.451	0.633
$\left(\frac{C_e}{Q_e} = \frac{1}{Q_{\max}}C_e + \frac{1}{KlQ_{\max}}\right)$	$K_l^{(c)}$	1.306	0.121
Freundlich	R^2	0.980	0.989
$\left(\log Q - \frac{1}{2} \log C + \log K_{c} \right)$	$K_{f}^{(\mathrm{d})}$	6.315	0.003
$\left(\lg Q_e = \frac{1}{n} \lg C_e + \lg K_f \right)$	$1/n^{(e)}$	0.353	0.621
	R^2	0.979	0.992
Langmuir-Freundlich	$N_t^{(\mathrm{f})}$	4.730	0.688
$\left(B = \frac{N_{t} \alpha F^{m}}{1 + \alpha F^{m}}\right)$	$lpha^{(\mathrm{g})}$	1.115	0.112
	m ^(h)	0.721	0.956

Table S2. Isotherm model parameters for Hg-IIPs and NIPs.

(a) Correlation coefficient.

(b) Maximum binding capacity, mg/g.

(c) Langmuir constant.

(d) Indicative constant for adsorption capacity of the adsorbent.

(e) Reflect the adsorption intensity or surface heterogeneity, ranging from 0 to 1.

(f) Total number of binding sites, mg /g.

(g) Equal to the median binding affinity constant, g/mg.

(h) Heterogeneity index, which will be equal to 1 for a homogeneous material, or will take values within 0 and 1 if the material is heterogeneous.

Table S3. Parameters obtained of Hg²⁺ adsorption towards Hg-IIP from four kinetic models.

Kinetic Models	Parameters			
Pseudo-first-order	$k_{l} (\min^{-1})^{(a)}$	$Q_{\rm e}(\mu{ m mol/g})^{\rm (b)}$	R^2	
$ln(Q_{\rm e}-Q_{\rm t})=lnQ_{\rm e}-k_{\rm t}t$	0.051 3.298		0.983	
Pseudo-second-order	$k_2(g/(\mu mol \cdot min))^{(c)}$	$Q_{\rm e}(\mu {\rm mol/g})$	R^2	
$\frac{t}{Q_{\rm t}} = \frac{1}{k_2 Q_{\rm e}^2} + \frac{t}{Q_{\rm e}}$	0.019	3.740	0.999	
Elovich	lpha (µmol/g) ^(d)	β (min·g/µmol)	R^2	
$Q_t = \frac{1}{\beta} ln(a\beta) + \frac{1}{\beta} ln(t)$	0.902	1.503	0.982	
Intraparticle diffusion	$k_p(\mu mol/(g min^{0.5}))^{(e)}$	$C (\mu mol/g)^{(f)}$	R^2	
$Q_{\rm t}=k_{\rm p}t^{1/2}+C$	0.359	0.3245	0.974	
	0.023	3.115	0.989	

(a) k_1 is the rate constant of adsorption in pseudo-first-order model.

(b) Q_e is the final adsorption amount at equilibrium, Q_t is the instantaneous adsorption amount in the adsorbent at time t.

(c) k_2 is the rate constant of adsorption in pseudo-second-order model.

(d) α and β represent the initial adsorption rate and desorption constant in Elovich model.

(e) k_p indicates the intraparticle diffusion rate constant and relates to the particle size R with

the equation $k_p = \frac{6Q_e}{R} \sqrt{\frac{D}{\pi}}$,

(f) C provides information about the thickness of the boundary layer.

Template	Functional monomer	Polymerization method	Preparation feature	Detection technology	pН	LOD (µg/L)	Real sample	Ref.
	monomer	memou	Touture	teennorogy		(µg/L)		
The chelate	APTES ^(a)	Sol-gel process	Using chelate as	AFS	7.0-8.0	0.015	Seawater, lake water,	This
of dithizone			template			(Hg ²⁺)	human hair, fish meat	work
and Hg ²⁺						0.02		
						(MeHg ⁺ ,		
						EtHg ⁺)		
Hg^{2+}	T-IPTS ^(b)	Sol-gel process	Synthesizing new	AFS	8.0	0.03 (Hg ²⁺)	River water, tap	1
			monomer				water	
The chelate	MAA ^(c)	Grafting and	Forming P(PDC-	CV-AAS ^(e)	6.0-7.0	0.02 (Hg ²⁺ ,	Wine	2
of PDC and		copolymerization	Hg)/SiG ^(d)			MeHg ⁺)		
Hg^{2+}								
Hg ²⁺	VP ^(f)	Copolymerization	Copolymerizing	CV-AAS	8.0	0.05 (Hg ²⁺)	Tap water, river	3
			of Hg ²⁺ , DAAB ^(g)				water, seawater	
			and VP					

Table S4. Method performance comparisons for mercury species by IIPs based SPE.

(a) 3-Aminopropyltriethoxysilane (APTES).

(b) 3-Isocyanatopropyltriethoxysilane (IPTS) bearing thymine (T) base.

(c) Methacrylic acid.

(d) Using silica gel chemically modified with 3-(trimethoxysilyl)propyl methacrylate (TSPM) as supporting material, and the Hg(II) IIP layer was grafted by copolymerization of MAA and trimethylolpropane trimethacrylate in the presence of Hg(II) complexes with the chelating agent 1-pyrrolidinedithiocarboxylic acid (PDC).

(e) Cold vapor atomic absorption spectrometry.

(f) Vinylpyridine.

(g) Diazoaminobenzene.

References

- 1 S. F. Xu, L. X. Chen, J. H. Li, Y. F. Guan and H. Z. Lu, *J. Hazard. Mater.*, 2012, **237–238**, 347.
- 2 I. Dakova, T. Yordanova and I. Karadjova, J. Hazard. Mater., 2012, 231, 49.
- 3 Y. W. Liu, X. J. Chang, D. Yang, Y. Guo and S. M. Meng, Anal. Chim. Acta, 2005, 538, 85.