Supporting Information for

Intramolecular C-O/C-S bond insertion of α-diazoesters for the synthesis of 2-aryl-4*H*-benzo[d][1,3]oxazine and 2-aryl-4*H*-benzo[d][1,3]thiazine derivatives

B. V. Subba Reddy,^{a*} R. Anji Babu,^{a,b} M. Ramana Reddy,^a B. Jagan Mohan Reddy,^b B. Sridhar^c

^aNatural Product Chemistry, ^cLaboratory of X-ray, Crystallography CSIR-Indian Institute of Chemical Technology, Hyderabad –500 007, India. E-mail:basireddy@iict.res.in.

^bDepartment of Organic Chemistry, Adikavi Nannaya University, Rajahmundry, 533105, India

Table of contents

1. General	S2
2. General Procedures	S2-S3
3. Characterization data of products 1h, 3d, 2d, 2e, 5a-5h and 6a-6d	S4-S10
4. Copies of ¹ H and ¹³ C NMR spectra of products	S11-S26

1. General

IR spectra were recorded on FT-IR spectrometer (KBr) and reported in reciprocal centimetres (cm-1). ¹H NMR spectra were recorded at 500 MHz, 300 MHz and ¹³C NMR at 125 MHz, 75 MHz. For ¹H NMR, tetramethylsilane (TMS) was used as internal standard ($\delta = 0$) and the values are reported as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t= triplet, q =quartet, m = multiplet, br = broad), and the coupling constants in Hz. For ¹³C NMR, CDCl₃ ($\delta = 77.27$)was used as internal standard and spectra were obtained with complete proton decoupling. Low-resolution MS and HRMS data were obtained using ESI ionization. Melting points were measured on micro melting point apparatus. Commercially available amides, acid chlorides and Cu(OTf)₂ were used without further purification. dichloroethane were distilled from CaH under N₂ atmosphere.

Scheme 1. Synthetic procedure for 2 and 4

Reagents & conditions: (a) MeOH, HCl, 0 °C to rt (b) H₂, 10% Pd/C, EtOAc, rt (c) RCOCl, Et₃N, DCM, rt (d) PMBSA, DBU, CH₃CN, 0 °C, rt, 90-95% yield (e) Lawesson's reagent, toulene, 70°C (f) PMBSA, DBU, CH₃CN, 0°C, rt, 85-90% yield

General procedure for the synthesis of methyl 2-(2-arylthioamidophenyl)acetate (3):

A solution of methyl 2-(2-aryl amidophenyl)acetate (1) (1 mmol) and Lawesson's reagent (1 mmol) in toluene (10 mL) was heated under reflux in inert atmosphere for 15 min. After removal of the solvent, the residue was purified by silica gel column chromatography using hexane-ethyl acetate to give the thioamidophenyl acetate (3).

General procedure for the synthesis of diazo compound 2 or 4 (Scheme 1):

To a stirred solution of **1** or **3** (1 mmol) and *p*-methylbenzenesulfonylazide (1.5 mmol) in acetonitrile (5 mL) was added 1,8-Diazabicycloundec-7-ene (1.5 mmol) at 0 °C. The reaction mixture was then allowed to warm to room temperature. After stirring for 1 h, the reaction mixture was quenched with aqueous NH₄Cl, extracted with diethyl ether and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and purified by flash column chromatography on silica gel to give the corresponding diazo compound **2** or **4**.

General procedure for the synthesis of benzoxazine or benzothiazine (5&6):

To a stirred solution of **2** or **4** (1 mmol) in dichloroethane (5 mL) was added Cu(OTf)₂ (10 mol %) at 0 °C. The resulting mixture was stirred at 25 °C under nitrogen atmosphere. The pale yellow mixture was stirred until it turned to pale red colour (10-30 min). The mixture was then quenched with saturated NaHCO₃ solution (1.0 mL) and extracted with dichloromethane (2-5 mL). The combined organic layers were washed with brine solution (3-5 mL), dried over anhydrous Na₂SO₄, and concentrated in vacuo. The resulting crude product was purified by silica gel column chromatography (100–200 mesh) using ethyl acetate/hexane as eluent to afford the pure product.

Characterization data of products:

Methyl 2-(2-(4-chlorobenzamido)phenyl)acetate (1h):

Solid, m.p.92-94 °C; ¹H NMR (500 MHz, CDCl₃): δ 9.80 (bs, 1H), 8.03-7.99 (m, 2H), 7.70 (d, *J*= 8.6 Hz, 1H), 7.50 (d, *J*= 8.5 Hz, 1H), 7.40-7.32 (m, 2H), 7.27-7.23 (m, 1H), 7.18-7.15 (m, 1H), 3.78 (s, 3H), 3.71 (s, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 173.0, 171.3, 170.1, 163.8, 138.5, 137.6, 136.2, 132.4, 131.4, 130.4, 130.2, 128.5, 128.3, 128.1, 125.1, 125.0, 124.4, 52.9, 39.1 ppm; MS (ESI): *m/z* ([M+H]⁺): 304.

Methyl 2-(2-(4-chlorophenylthioamido)phenyl)acetate (3d):

Solid, m.p.114-116 °C; ¹H NMR (300 MHz, CDCl₃): δ 10.47 (bs, 1H), 7.98-7.92 (m, 3H), 7.47-7.28 (m, 5H), 3.74 (s, 3H), 3.70 (s, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 196.3, 172.7, 139.3, 138.1, 137.3, 130.6, 128.4, 127.9, 127.8, 127.3, 127.2, 52.9, 38.6 ppm; MS (ESI): *m/z* ([M+H]⁺): 320.

Methyl 2-(2-(4-cyanobenzamido)phenyl)-2-diazoacetate (2d):

Yellow Solid, m.p.112-114 °C; ¹H NMR (300 MHz, CDCl₃): δ 9.74 (bs, 1H), 8.07 (d, *J*= 8.3 Hz, 3H), 7.81 (d, *J*= 8.4 Hz, 3H), 7.32-7.25 (m, 2H), 3.92 (s, 3H) ppm; ¹³C NMR (75 MHz,

CDCl₃): δ 168.3, 153.9, 137.2, 131.6, 129.8, 128.3, 119.5, 118.1,114.4, 74.4, 53.1 ppm; MS (ESI): *m/z* ([M+H]⁺): 321.

Methyl 2-diazo-2-(2-(thiophene-2-carboxamido)phenyl)acetate (2e):

Yellow Solid, m.p.108-110 °C; ¹H NMR (300 MHz, CDCl₃): δ 9.41 (bs, 1H), 7.99 (d, *J*= 8.1 Hz, 1H), 7.65 (d, *J*= 4.7 Hz, 1H), 7.45 (d, *J*= 5.9 Hz, 1H), 7.28-7.20 (m, 2H), 7.14-7.09 (m, 2H), 3.93 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 173.6, 160.1, 139.8, 136.6, 130.8, 128.5, 128.4, 127.8, 125.2, 124.6, 52.7, 38.9 ppm; MS (ESI): *m/z* ([M+H]⁺): 302.

Methyl 2-phenyl-4*H*-benzo[*d*][1,3]oxazine-4-carboxylate (5a):

Solid, m.p.104-106 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.01 (d, *J*= 7.9 Hz, 2H), 7.57 (d, *J*= 7.6 Hz, 1H), 7.48-7.19 (m, 6H), 4.32 (s, 1H), 3.59 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 168.5, 155.7, 137.8, 131.6, 131.1, 129.5, 127.8, 127.7, 126.3, 125.1, 124.8, 119.5, 74.2, 52.8 ppm; MS (ESI): *m/z* ([M+H]⁺): 268; HRMS (ESI): *m/z* calcd for C₁₆H₁₄O₃N: 268.09727; found: 268.09728.

Methyl 2-(2-bromophenyl)-4*H*-benzo[*d*][1,3]oxazine-4-carboxylate (5b):

Solid, m.p.82-84 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.96 (d, *J*= 9.3 Hz, 1H), 7.70 (d, *J*= 7.9 Hz, 1H), 7.46-7.29 (m, 6H), 5.99 (s, 1H), 3.82 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 167.9, 155.1, 137.0, 133.0, 130.8, 129.4, 126.8, 126.6, 124.8, 124.8, 121.0, 118.8, 74.6, 53.1 ppm; MS (ESI): *m/z* ([M+H]⁺): 346; HRMS (ESI): *m/z* calcd for C₁₆H₁₃O₃NBr: 346.00825; found: 346.00827.

Methyl 2-(4-methoxyphenyl)-4*H*-benzo[*d*][1,3]oxazine-4-carboxylate (5c):

Solid, m.p.102-104 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.13 (d, *J*= 8.9 Hz, 2H), 7.37-7.17 (m, 4H), 6.95 (d, *J*= 8.9 Hz, 2H), 5.91 (s, 1H), 3.87 (s, 3H), 3.72 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 169.2, 166.0, 164.0, 155.4, 138.2, 130.6, 130.0, 126.7, 125.6, 125.1, 119.8, 115.4, 115.2, 74.3, 55.0, 52.8 ppm; MS (ESI): *m/z* ([M+H]⁺): 298; HRMS (ESI): *m/z* calcd for C₁₇ H₁₆ O₄ N: 298.10731; found: 298.10750

Methyl 2-(4-cyanophenyl)-4*H*-benzo[*d*][1,3]oxazine-4-carboxylate (5d):

Solid, m.p.94-96 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.30 (d, *J*= 8.3 Hz, 2H), 7.75 (d, *J*= 8.3 Hz, 2H), 7.37-7.25 (m, 4H), 5.98 (s, 1H), 3.76 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 169.0, 154.4, 137.7, 136.2, 131.9, 130.1, 128.6, 127.6, 125.7, 119.8, 118.4, 114.6, 74.4, 52.9 ppm; MS (ESI): *m/z* ([M+H]⁺): 293; HRMS (ESI): *m/z* calcd for C₁₇H₁₃O₃N₂: 293.0925; found: 293.0925

Methyl 2-(thiophen-2-yl)-4*H*-benzo[*d*][1,3]oxazine-4-carboxylate (5e):

Solid, m.p.108-110 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.80 (d, *J*= 3.7 Hz, 1H), 7.52 (d, *J*= 6.0 Hz, 1H), 7.37-7.10 (m, 5H), 5.88 (s, 1H), 3.73 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 168.5, 152.2, 137.8, 135.7, 130.2, 130.1, 129.6, 127.3, 126.1, 125.2, 124.6, 119.4, 74.4, 53.0 ppm; MS (ESI): *m/z* ([M+H]⁺): 274; HRMS (ESI): *m/z* calcd for C₁₄H₁₂O₃NS: 274.0538; found: 274.0537.

Methyl 2-(4-fluorophenyl)-4*H*-benzo[*d*][1,3]oxazine-4-carboxylate (5f):

Solid, m.p.86-88 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.31-8.23 (m, 2H), 7.42-7.08 (m, 7H), 5.95 (s, 1H), 3.75 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 169.2, 166.0, 164.0, 155.4, 138.2, 130.6, 130.0, 128.2, 126.7, 125.6, 125.1, 119.8, 115.4, 115.2, 74.3, 52.8 ppm; MS (ESI): *m/z* ([M+H]⁺): 286; HRMS (ESI): *m/z* calcd for C₁₆H₁₃O₃NF: 286.0877; found: 286.0877.

Methyl 2-(3-methoxyphenyl)-4*H*-benzo[*d*][1,3]oxazine-4-carboxylate (5g):

Semi Solid; ¹H NMR (500 MHz, CDCl₃): δ 7.79-7.70 (m, 2H), 7.42-7.20 (m, 5H), 7.09-7.05 (m, 1H), 5.95 (s, 1H), 3.90 (s, 3H), 3.74 (m, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 169.3, 159.4, 138.3, 133.4, 129.9, 129.2, 126.7, 125.5, 125.2, 120.8, 118.1, 112.7, 74.3, 55.4, 52.8 ppm; MS (ESI): *m/z* ([M+H]⁺): 298; HRMS (ESI): *m/z* calcd for C₁₇H₁₆O₄N: 298.1070; found: 298.1072.

Methyl 2-(4-chlorophenyl)-4*H*-benzo[*d*][1,3]oxazine-4-carboxylate (5h):

Solid, m.p.72-74 °C; ¹H NMR (300 MHz, CDCl₃): δ 8.25-8.17 (m, 2H), 7.42-7.13 (m, 6H), 5.95 (s, 1H), 3.75 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 168.5, 154.8, 137.7, 137.3, 136.9, 130.2, 129.6, 129.2, 128.1, 126.5, 125.2, 124.9, 119.5, 74.3, 53.0 ppm; MS (ESI): *m/z* ([M+H]⁺): 302; HRMS (ESI): *m/z* calcd for C₁₆H₁₃ClNO₃: 302.0855; found: 302.0853.

Methyl 2-(4-methoxyphenyl)-4*H*-benzo[*d*][1,3]thiazine-4-carboxylate (6b):

Solid, m.p.132-134 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.12 (d, *J*= 8.9 Hz, 2H), 7.54-7.43 (m, 2H), 7.32-7.22 (m, 2H), 6.99 (d, *J*= 8.9 Hz, 2H), 4.88 (s, 1H), 3.89 (s, 3H), 3.65 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 170.1, 162.6, 156.7, 143.6, 130.0, 129.4, 127.8, 127.3, 117.3,

113.8, 55.4, 53.1, 44.2 ppm; MS (ESI): m/z ([M+H]⁺): 314; HRMS (ESI): m/z calcd for C₁₇ H₁₆O₃NS: 314.0846; found: 314.0847.

Solid, m.p.124-126 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.83-7.87 (m, 1H), 7.60-7.10 (m, 9H), 5.91 (s, 1H), 3.76 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 168.5, 152.2, 137.8, 135.7, 130.5, 130.2, 130.1, 129.6, 129.1, 127.5, 127.3, 126.1, 125.2, 124.6, 119.4, 74.4, 53.0 ppm; MS (ESI): *m/z* ([M+H]⁺): 290; HRMS (ESI): *m/z* calcd for C₁₄H₁₂O₂NS₂: 290.0306; found: 290.0306.

Methyl 2-(4-chlorophenyl)-4*H*-benzo[*d*][1,3]thiazine-4-carboxylate (6d):

Solid, m.p.78-80 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.19 (d, *J*= 8.6 Hz, 2H), 7.34-7.10 (m, 3H), 6.89 (d, *J*= 8.7 Hz, 2H), 5.96 (s, 1H), 3.81 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 169.5, 166.4, 164.5, 155.5, 138.5, 130.5, 130.3, 126.3, 125.6, 125.3, 119.8, 115.5, 115.3, 74.5, 55.3, 52.7 ppm; MS (ESI): *m/z* ([M+H]⁺): 318; HRMS (ESI): *m/z* calcd for C₁₆H₁₃ClNO₂S: 318.0357; found: 318.0349.

Methyl 2-phenyl-4*H*-benzo[*d*][1,3]thiazine-4-carboxylate (6a):

Solid, m.p.104-106 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.07 (d, *J*= 7.9 Hz, 2H), 7.49-7.35 (m, 5H), 7.26-7.17 (m, 2H), 4.82 (s, 1H), 3.58 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 168.5, 152.2, 137.8, 135.7, 130.2, 130.1, 129.6, 127.3, 126.1, 125.2, 124.6, 119.4, 74.4, 53.0 ppm; MS (ESI): *m/z* ([M+H]⁺): 284; HRMS (ESI): *m/z* calcd for C₁₆H₁₄O₂NS: 284.0744; found: 284.0745.

Copies of ¹H and ¹³C NMR spectra:

¹H NMR (500 MHz, CDCl₃) spectrum of compound 5a

¹³C NMR (125 MHz, CDCl₃) spectrum of compound 5a

¹H NMR (500 MHz, CDCl₃) spectrum of compound 5b

¹³C NMR (125 MHz, CDCl₃) spectrum of compound 5b

¹H NMR (500 MHz, CDCl₃) spectrum of compound 5c

¹³C NMR (75 MHz, CDCl₃) spectrum of compound 5c

¹H NMR (500 MHz, CDCl₃) spectrum of compound 5d

¹³C NMR (75 MHz, CDCl₃) spectrum of compound 5d

¹H NMR (500 MHz, CDCl₃) spectrum of compound 5e

¹³C NMR (125 MHz, CDCl₃) spectrum of compound 5e

¹H NMR (500 MHz, CDCl₃) spectrum of compound 5f

¹³C NMR (125 MHz, CDCl₃) spectrum of compound 5f

¹H NMR (500 MHz, CDCl₃) spectrum of compound 5g

¹³C NMR (75 MHz, CDCl₃) spectrum of compound 5g

¹H NMR (300 MHz, CDCl₃) spectrum of compound 5h

¹³C NMR (125 MHz, CDCl₃) spectrum of compound 5h

¹H NMR (500 MHz, CDCl₃) spectrum of compound 6b

¹³C NMR (75 MHz, CDCl₃) spectrum of compound 6b

¹H NMR (300 MHz, CDCl₃) spectrum of compound 6c

¹³C NMR (75 MHz, CDCl₃) spectrum of compound 6c

¹H NMR (500 MHz, CDCl₃) spectrum of compound 6a

¹³C NMR (75 MHz, CDCl₃) spectrum of compound 6a

¹H NMR (500 MHz, CDCl₃) spectrum of compound 6d

¹³C NMR (125 MHz, CDCl₃) spectrum of compound 6d

¹H NMR (500 MHz, CDCl₃) spectrum of compound 2d

¹³C NMR (75 MHz, CDCl₃) spectrum of compound 2d

¹H NMR (300 MHz, CDCl₃) spectrum of compound 2e

¹³C NMR (75 MHz, CDCl₃) spectrum of compound 2e

¹H NMR (500 MHz, CDCl₃) spectrum of compound 1h

¹³C NMR (75 MHz, CDCl₃) spectrum of compound 1h

¹H NMR (300 MHz, CDCl₃) spectrum of compound 3d

¹³C NMR (75 MHz, CDCl₃) spectrum of compound 3d