"One-pot" Access to α-D-Mannopyranosides from Glycals Employing Ruthenium Catalysis

Sravanthi Chittela, Thurpu Raghavender Reddy, Palakodety Radha Krishna and Sudhir Kashyap*

D-207, Discovery Laboratory, Organic and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, INDIA * Corresponding author. Tel.: +91-402-716-1649; fax: +91-402-716-0387; e-mail: <u>skashyap@iict.res.in</u>

Supporting Information

Index

General synthesis information	S2
General procedure for chemical synthesis	S 3
¹ H, ¹³ C NMR, IR and MS/HRMS Spectra	S4-S47
Optical Rotation data	S48-S50

Experimental

General Synthesis Information. Reactions were run in screw capped glass vials (4 mL) stirred with Teflon®-coated magnetic stir bars. Moisture and air-sensitive reactions were performed in flame-dried round bottom flasks, fitted with rubber septa or glass gas adapters, under a positive pressure of nitrogen. Moisture and air-sensitive liquids or solutions were transferred via nitrogen-flushed syringe. Concentration of solvents was accomplished by rotary evaporation using a Büchi rotary evaporator at temperatures between 35 °C and 50 °C. Experiments were monitored by thin layer chromatography (TLC).

Materials. Unless otherwise noted, materials were obtained from commercial suppliers and used without purification. Removal of solvent under reduced pressure refers to distillation with a Büchi rotary evaporator attached to a vacuum pump (~3 mmHg). Products obtained as solids or high boiling oils were dried under vacuum (~1 mmHg).

Chromatography. Analytical TLC was performed using Whatman 250 micron aluminum backed UV F254 precoated silica gel flexible plates. Subsequent to elution, ultraviolet illumination at 254 nm allowed for visualization of UV active materials. Staining with p-anisaldehyde, basic potassium permanganate solution, or Molisch's reagents allowed for further visualization. The retardation factor (Rf) is the ratio of the distance traveled by the compound to the distance traveled by the eluent.

Physical Data. Proton nuclear magnetic resonance spectra (¹H NMR) were recorded on Avance 300 or Avance 500 MHz nuclear magnetic resonance spectrometers. Chemical shifts for ¹H NMR spectra are reported as δ in units of parts per million (ppm) relative to tetramethylsilane (δ 0.0) using the residual solvent signal as an internal standard or tetramethylsilane itself: chloroform-d (δ 7.26, singlet). The number of protons (n) for a given resonance is indicated by nH. IR spectra were recorded on Bruker Alpha spectrometer and mass analyses (ESI) were performed on Finnegan MAT 1020 mass spectrometer operating at 70 eV.

General experimental procedure for Ru-catalyzed one-pot glycosylation/dihydroxylation method: (1) To a stirred solution of 3,4,6-tri-O-acetyl-D-glucal 1 (1 equiv) and acceptor (1.2 equiv) in anhydrous acetonitrile (2 mL/mmol) under an atmosphere of argon was added RuCl₃ (5 mol%) at room temperature. The reaction mixture was stirred until the complete consumption of the starting material (glycal), adjudged by TLC. (2) The reaction mixture was cooled at 0 °C and diluted with EtOAc (2 mL). An aqueous solution of NaIO₄ (1.5 equiv) and CeCl₃.7H₂O (5 mol%) in 1 mL H₂O was added to above mentioned reaction and stirred vigrously. The reaction deemed complete by TLC in utmost 10 min to obtain corresponding diols. The reaction was quenched with saturated NaHCO₃ (10 mL), diluted with EtOAc (10 mL), and extracted with EtOAC (3 X 30 mL). The combined organic layes were washed with brine solution, dried over anhydrous Na₂SO₄, concentrated *in vacuo* and purified by silica gel coloumn chromatography (Hexanes-EtOAc 2:1). Following acetylation of diol in CH₂Cl₂ (5 mL), pyridine (0.5 mL), and acetic anhydride (5 equiv) in the presence of catalytic amount of DMAP gave corresponding peracetylated glycoside. Following usual work-up and purification by chromatography (silica gel, hexanes-EtOAc) afforded desired α -D-mannopyranosides (**3a-s**) as major product in good yields. All the compounds were confirmed by ¹H NMR, ¹³C NMR and MS/HRMS spectroscopy and overall data were in complete agreement with the assigned structures.

IR Spectrum of compound $\mathbf{3a}$ in CHCl₃ FTIR Analysis Report

HRMS (ESI) m/z [M + NH₄]⁺ calcd. for C₂₁H₃₀NO₁₀⁺: 456.18642; found: 456.18803.

IR Spectrum of compound **3b** in CHCl₃ FTIR Analysis Report

HRMS (ESI) m/z [M + NH₄]⁺ calcd. for C₂₄H₄₂NO₁₀⁺: 504.28195; found: 504.28032.

IR Spectrum of compound 3c in CHCl₃ FTIR Analysis Report

HRMS (ESI) m/z [M + NH₄]⁺ calcd. for C₁₈H₃₀NO₁₀⁺: 420.18642; found: 420.18789.

IR Spectrum of compound $\mathbf{3d}$ in CHCl₃ FTIR Analysis Report

HRMS (ESI) m/z [M + NH₄]⁺ calcd. for C₂₁H₃₆NO₁₀⁺: 462.23337; found: 462.23470.

IR Spectrum of compound **3e** in CHCl₃ FTIR Analysis Report

HRMS (ESI) m/z [M + NH₄]⁺ calcd. for C₁₈H₃₂NO₁₁⁺: 438.19699; found: 438.19841.

IR Spectrum of compound $\mathbf{3f}$ in CHCl₃

HRMS (ESI) m/z [M + Na]⁺ calcd. for C₂₈H₃₀O₁₀Na⁺: 549.17312; found: 549.17555.

IR Spectrum of compound **3g** in CHCl₃ FTIR Analysis Report

HRMS (ESI) m/z [M + NH₄]⁺ calcd. for C₁₈H₂₇N₂O₁₂⁺: 463.15585; found: 463.15871.

3.22

8.0 C19 H24 O11

428.13131

428.13453 1449608.5

100.00

IR Spectrum of compound **3h** in CHCl₃ FTIR Analysis Report

HRMS (ESI) m/z [M + NH₄]⁺ calcd. for C₂₂H₂₇N₂O₁₂⁺: 511.15585; found: 511.15926.

IR Spectrum of compound **3i** in CHCl₃ FTIR Analysis Report

HRMS (ESI) m/z [M + NH₄]⁺ calcd. for C₁₆H₂₇ClNO₁₀⁺: 428.13180; found: 428.13350.

IR Spectrum of compound **3j** in CHCl₃ FTIR Analysis Report

HRMS (ESI) *m/z* [M + Na]⁺ calcd. for C₂₄H₃₁NO₁₂Na⁺: 548.17385; found: 548.17422.

IR Spectrum of compound 3k in CHCl₃

(ppm) equiv. 812.34835 36816216.0 100.00 812.34880 -0.44 16.5 C42 H54 O15 N

HRMS (ESI) m/z [M + NH₄]⁺ calcd. for C₄₂H₅₄NO₁₅⁺: 812.34880; found: 812.34842.

IR Spectrum of compound **31** in CHCl₃ FTIR Analysis Report

HRMS (ESI) m/z [M + NH₄]⁺ calcd. for C₄₂H₄₈NO₁₈⁺: 854.28659; found: 854.28402.

¹H NMR Spectrum of compound **3m** in CDCl₃ (300 MHz)

IR Spectrum of compound **3m** in CHCl₃ FTIR Analysis Report

HRMS (ESI) m/z [M + NH₄]⁺ calcd. for C₄₂H₅₄NO₁₅⁺: 812.34880; found: 812.34827.

IR Spectrum of compound **3n** in CHCl₃ FTIR Analysis Report

HRMS (ESI) m/z [M + NH₄]⁺ calcd. for C₄₂H₄₈NO₁₈⁺: 854.28659; found: 854.28660.

IR Spectrum of compound **30** in CHCl₃ FTIR Analysis Report

HRMS (ESI) m/z [M + NH₄]⁺ calcd. for C₂₆H₄₂NO₁₅⁺: 608.25490; found: 608.25378.

IR Spectrum of compound **3p** in CHCl₃ FTIR Analysis Report

HRMS (ESI) m/z [M + NH₄]⁺ calcd. for C₂₃H₃₈NO₅⁺:552.22868; found: 552.22884.

IR Spectrum of compound **3q** in CHCl₃ FTIR Analysis Report

HRMS (ESI) *m/z* [M + Na]⁺ calcd. for C₃₃H₃₇NO₁₄Na⁺: 694.21063; found: 694.21162.

IR Spectrum of compound **3r** in CHCl₃ FTIR Analysis Report

HRMS (ESI) m/z [M + Na]⁺ calcd. for C₃₄H₃₉NO₁₄Na⁺: 708.22628; found: 708.22732.

IR Spectrum of compound **3s** in CHCl₃ FTIR Analysis Report

HRMS (ESI) m/z [M + Na]⁺ calcd. for C₃₅H₃₉NO₁₄Na⁺: 720.22628; found: 720.22724.

IR Spectrum of compound **3a'** in CHCl₃ FTIR Analysis Report

HRMS (ESI) m/z [M + NH₄]⁺ calcd. for C₁₇H₂₆NO₈⁺: 372.16529; found: 372.16804.

IR Spectrum of compound **3b'** in CHCl₃ FTIR Analysis Report

ESI m/z [M + Na]⁺ calcd. for C₂₀H₃₄O₈Na⁺: 425.21459; found: 425.

Optical Rotation data sheet:

Sr. No.	Compound	Conc. (c, CHCl ₃)	Optical Rotation, $[\alpha]_D$
1	AcO AcO AcO 3a	(c 3.8, CHCl ₃)	+32.609
2	AcO OAc AcO -O AcO -O 3b	(c 3.9, CHCl ₃)	+103.780
3	AcO AcO AcO 3c	(c 4.8, CHCl ₃)	+49.720
4	AcO OAc AcO -O AcO -O 3d	(c 2.6, CHCl ₃)	+52.329
5	AcO OAc AcO I-O AcO 3e	(c 5.2, CHCl ₃)	+27.192
6	AcO OAc AcO OAc AcO 3f	(c 4.1, CHCl ₃)	+41.951
7	AcO OAc AcO OAc AcO OAc 3g	(c 4.5, CHCl ₃)	+84.578

8	$\begin{array}{c} AcO \\ AcO \\ AcO \\ AcO \\ \end{array}$	(c 3.3, CHCl ₃)	+28.200
9	AcO AcO AcO 3i O Cl	(c 3.5, CHCl ₃)	+65.400
10	AcO AcO AcO 3j O NHCbz	(c 1.5, CHCl ₃)	+29.867
11	AcO OAc AcO OBn 3k O OBn OBn	(c 3.9, CHCl ₃)	+57.966
12	AcO OAc AcO OMe AcO 3I O OBz OBz OBz	(c 4.4, CHCl ₃)	+43.237
13	AcO AcO AcO 3m O BnO BnO O BnO O Me	(c 0.7, CHCl ₃)	+94.500
14	AcO OAc AcO OAc AcO OMe 3n O OBz OBz	(c 2.1, CHCl ₃)	-69.905

15	$\begin{array}{c} AcO \\ AcO \\ AcO \\ AcO \\ 30 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	(c 1.8, CHCl ₃)	+37.889
16	AcO OAc OMe AcO OAc OMe AcO OAc OMe	(c 4.9, CHCl ₃)	+4.122
17	AcO AcO AcO 3q O O CO ₂ Me NHFmoc	(c 4.7, CHCl ₃)	+61.310
18	AcO AcO AcO 3r O CO ₂ Me NHFmoc	(c 1.7, CHCl ₃)	+12.920
19	AcO OAc AcO AcO	(c 2.2, CHCl ₃)	-36.364
20	AcO HO HO 3a'	(c 2.1, CHCl ₃)	+23.810
21	AcOOOH AcOOOO	(c 1.4, CHCl ₃)	+63.571