Preparation and characterization of TiO₂-graphene@Fe₃O₄ magnetic composite and its application on the removal of trace microcystin-LR

Yulu Liang^{*a*}, Xiwen He^{*a*}, Langxing Chen *^{*a*} and, Yukui Zhang^{*a,b*}

^aState Key Laboratory of Medical Chemical Biology, Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, China. Collaborative Innovation Center of Chemical Science and Engineering (Tianjin).
E-mail: lxchen@nankai.edu.cn; Tel: 0086+0 22-23505091; Fax: 0086+0 22-23502458

^bDalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116011, P. R. China.

E-mail: ykzhang@dicp.ac.cn; Tel: 0086+411-84379560; Fax:0086+411-84379560

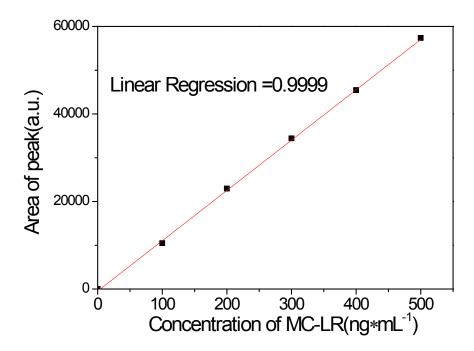


Figure S1 The linear relationship plot of MC-LR concentration and the HPLC peak area.

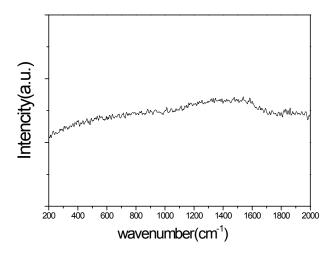


Figure S2 FT-Raman spectra of the Fe₃O₄ nanoparticles.

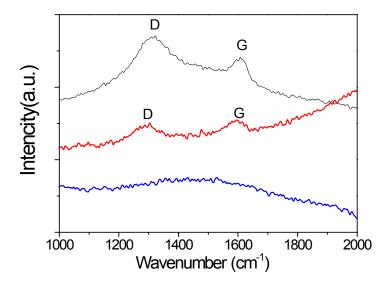
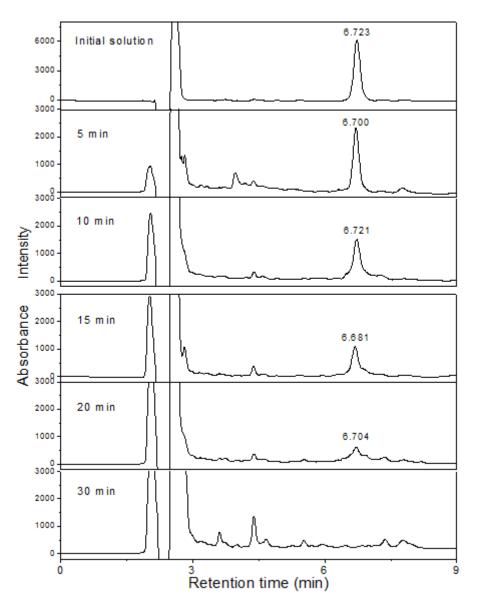



Figure S3 FT-Raman spectra of the graphene oxide (blue), reduced graphene (red) and graphene@ Fe_3O_4 composite (black).

Figure S4 HPLC chromatograms of MC-LR. Initial solution and photocatalytically degraded for 5 min, 10 min, 15min, 20 min and 30 min with the TiO_2 -grapheme@Fe₃O₄ nanocomposite, respectively.