Supporting Information

Metal-free *n*-Et₄NBr-catalyzed radical cyclization of disulfides and alkynes leading to benzothiophenes under

mild conditions

Daoshan Yang,^[a] Kelu Yan,^[a] Wei Wei,^[a] Laijin Tian,^[a] Min Jiang,^[b] Qinghe Li^[a] and Hua Wang^{*[a]}

^a Shandong Province Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China

- * Fax: +86-5374458306; E-mail: huawang_qfnu@126.com
- ^b Beijing Key Laboratory for Analytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China

Table of Contents

General experimental procedures	P2
Kinetic Isotopic Effect (KIE) Studies	P2
Reference	P4
Crystal preparation and X-ray diffraction analysis of compound3b	P5
Crystal preparation of 3b	P5
The ¹ H and ¹³ C NMR spectra of compounds 3a-v	P13

General experimental procedures

All reagents and solvents were obtained from commercial suppliers and used without further purification. Mass analyses and HRMS were obtained on a Finnigan-LCQDECA mass spectrometer. Flash chromatography was performed on silica gel (200 ~ 300 mesh). ¹H and ¹³C NMR data were recorded at 400 and 100 MHz on a BRUKER 400 spectrometer. Chemical shifts (δ) are expressed in parts per million (ppm) coupling constants (J) are in Hz. Proton and carbon magnetic resonance spectra (¹H NMR and ¹³C NMR) were recorded using tetramethylsilane (TMS) in the solvent of CDCl₃ as the internal standard (¹H NMR: TMS at 0.00 ppm, CDCl₃ at 7.28 ppm; ¹³C NMR: CDCl₃ at 77.0 ppm).

Kinetic Isotopic Effect (KIE) Studies:

1a-ds were synthesized deuterium substrates according the literature procedure.

Figure S1 General synthesis route for preparation of 1a-d₅

A 25 mL Schlenk tube equipped with a magnetic stirring bar was charged with TEAB (10.5 mg), potassium persulfate(1.1 mmol), 1,2-diphenyldisulfane disulfides (1a) (0.25 mmol), $1a-d_5(0.25 \text{ mmol})$ and diethyl but-2-ynedioate (2b) (1.7 mmol). The tube was evacuated twice and backfilled with nitrogen, and DCE (1.5 mL) was added to the tube under nitrogen atmosphere. The tube was sealed with a balloon and then the mixture was allowed to stir under nitrogen atmosphere at 90 °C for 24 h. After completion of the reaction, the resulting solution was cooled to room temperature, and the solvent was removed with the aid of a rotary evaporator. The residue was purified

by column chromatography on silica gel using petroleum ether/ethyl acetate as eluent to provide the desired product , the product was analyzed by ¹H-NMR (400 MHz) (Figure S2). The result was summarized in equation S1:

Figure S2 The 1H-NMR spectrum of 3b and 3b-d₄

General procedure for synthesis of substituted benzothiophenes:

A 25 mL Schlenk tube equipped with a magnetic stirring bar was charged with TEAB (10.5 mg), potassium persulfate(1.1 mmol), substituted various disulfides (1) (0.5 mmol) and alkynes (2) (1.7 mmol). The tube was evacuated twice and backfilled with nitrogen, and DCE (1.5 mL) was added to the tube under nitrogen atmosphere. The tube was sealed with a balloon and then the mixture was allowed to stir under nitrogen atmosphere at 90 °C for 24 h. After completion of the reaction, the resulting solution was cooled to room temperature, and the solvent was removed with the aid of a rotary evaporator. The residue was purified by column chromatography on silica gel using petroleum ether/ethyl acetate as eluent to provide the desired product (3).

References

- [1] M. P. Mehn, S. D. Brown, D. M. Jenkins, J. C. Peters, L. Que, *Inorg. Chem.*, 2006, 7417-7427
- [2] R.S. Downing, P.J. Kunkeler, H.V. Bekkum, Catalysis Today., 1997, 37, 121-136.
- [3] A. Khazaei, M. Kazem-Rostami, A. R. Moosavi-Zare, M. Bayat, S. Saednia. *Synlett.*, 2012, 23, 1893-1896.
- [4] J. L. G. Ruano, A. Parra, J. Alemán, Green Chem., 2008, 10, 706-711.

Crystal preparation and X-ray diffraction analysis of compound 3b

Crystal preparation of compound 3b.

Compound **3b** (20 mg) was dissolved in 5 mL of diethyl ether, and it was crystallized to give crystal as colorless prisms after the solvent was slowly volatilized in 2 days at room temperature (~ $25 \,^{\circ}$ C).

X-Ray diffraction analysis of compound 3b.

Identification code	a
Empirical formula	$C_{14} H_{14} O_4 S$
Formula weight	278.31
Temperature	295(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P21/n
Unit cell dimensions	a = 10.7820(18) A alpha = 90 deg.
	b = 10.5128(17) A beta = 106.290(2) deg.
	c = 12.334(2) A gamma = 90 deg.
Volume	1341.9(4) A^3
Z, Calculated density	4, 1.378 Mg/m^3
Absorption coefficient	0.248 mm^-1
F(000)	584
Crystal size	0.36 x 0.28 x 0.20 mm
Theta range for data collection	on 2.22 to 25.99 deg.
Limiting indices	-13<=h<=13, -12<=k<=12, -15<=l<=14
Reflections collected / uniqu	e $10113 / 2639 [R(int) = 0.0256]$
Completeness to theta $= 25.9$	9 100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9521 and 0.9160
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2639 / 0 / 173

Goodness-of-fit on F^2	1.048
Final R indices [I>2sigma(I)]	R1 = 0.0442, wR2 = 0.1241
R indices (all data)	R1 = 0.0504, wR2 = 0.1302
Extinction coefficient	0.015(2)
Largest diff. peak and hole	0.542 and -0.243 e.A^-3

Table 2. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² $x \ 10^{3}$) for a. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

x	У	Z	U(eq)	
C(1)	1194(2)	10568(2)	1340(2)	42(1)
C(2)	1380(2)	11881(2)	1256(2)	51(1)
C(3)	645(2)	12691(2)	1684(2)	56(1)
C(4)	-273(2)	12236(2)	2194(2)	55(1)
C(5)	-460(2)	10955(2)	2281(2)	48(1)
C(6)	277(2)	10099(2)	1851(1)	39(1)
C(7)	248(2)	8735(2)	1841(1)	40(1)
C(8)	-661(2)	7995(2)	2319(2)	46(1)
C(9)	-825(3)	6765(2)	3887(2)	67(1)
C(10)	-823(3)	5428(2)	3511(2)	77(1)
C(11)	1098(2)	8221(2)	1338(2)	40(1)
C(12)	1229(2)	6844(2)	1161(2)	43(1)
C(13)	2247(2)	5235(2)	410(2)	54(1)
C(14)	3190(3)	5118(2)	-245(2)	75(1)
O(1)	-1781(2)	7870(2)	1850(2)	72(1)
O(2)	-68(2)	7567(1)	3343(1)	55(1)
O(3)	576(1)	6059(1)	1448(1)	58(1)
O(4)	2117(1)	6587(1)	639(1)	51(1)

1.403(3)	
1.403(2)	
1.7284(18)	
1.367(3)	
0.9300	
1.398(3)	
0.9300	
1.370(3)	
0.9300	
1.399(3)	
0.9300	
1.434(3)	
1.356(2)	
1.495(2)	
1.191(2)	
1.324(2)	
1.461(2)	
1.480(3)	
0.9700	
0.9700	
0.9600	
0.9600	
0.9600	
1.476(3)	
1.7316(18)	
1.200(2)	
	1.403(3) 1.403(2) 1.7284(18) 1.367(3) 0.9300 1.398(3) 0.9300 1.370(3) 0.9300 1.399(3) 0.9300 1.434(3) 1.356(2) 1.495(2) 1.191(2) 1.324(2) 1.461(2) 1.461(2) 1.480(3) 0.9700 0.9700 0.9700 0.9700 0.9600 0.9600 1.476(3) 1.7316(18) 1.200(2)

 Table 3.
 Bond lengths [A] and angles [deg] for a.

C(12)-O(4)	1.323(2)
C(13)-O(4)	1.463(2)
C(13)-C(14)	1.470(3)
C(13)-H(13A)	0.9700
C(13)-H(13B)	0.9700
C(14)-H(14A)	0.9600
C(14)-H(14B)	0.9600
C(14)-H(14C)	0.9600
C(2)-C(1)-C(6)	120.82(18)
C(2)-C(1)-S(1)	127.30(15)
C(6)-C(1)-S(1)	111.87(13)
C(3)-C(2)-C(1)	118.34(19)
C(3)-C(2)-H(2)	120.8
C(1)-C(2)-H(2)	120.8
C(2)-C(3)-C(4)	121.38(19)
C(2)-C(3)-H(3)	119.3
C(4)-C(3)-H(3)	119.3
C(5)-C(4)-C(3)	120.6(2)
C(5)-C(4)-H(4)	119.7
C(3)-C(4)-H(4)	119.7
C(4)-C(5)-C(6)	119.47(19)
C(4)-C(5)-H(5)	120.3
C(6)-C(5)-H(5)	120.3
C(5)-C(6)-C(1)	119.36(17)
C(5)-C(6)-C(7)	129.31(16)
C(1)-C(6)-C(7)	111.33(15)
C(11)-C(7)-C(6)	112.74(15)
C(11)-C(7)-C(8)	125.11(16)
C(6)-C(7)-C(8)	122.13(15)
O(1)-C(8)-O(2)	125.35(18)

123 60(18)
110.96(16)
110.7(2)
109.5
109.5
109.5
109.5
109.5
108.1
109.5
109.5
109.5
109.5
109.5
109.5
124.26(16)
112.99(13)
122.69(13)
124.52(18)
122.88(17)
112.59(16)
107.83(18)
110.1
110.1
110.1
110.1
108.5
109.5
109.5
109.5
109.5

H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5
C(8)-O(2)-C(9)	116.80(17)
C(12)-O(4)-C(13)	114.48(15)
C(1)-S(1)-C(11)	91.06(9)

Symmetry transformations used to generate equivalent atoms:

Table 4.Anisotropic displacement parameters $(A^2 \times 10^3)$ for a. Theanisotropic displacement factor exponent takes the form:

-2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

U11	U22	1	U33	U23	U13	U12
C(1)	44(1)	38(1)	42(1)	2(1)	10(1)	-1(1)
C(2)	57(1)	39(1)	57(1)	6(1)	16(1)	-9(1)
C(3)	68(1)	34(1)	64(1)	3(1)	13(1)	-5(1)
C(4)	65(1)	38(1)	62(1)	-3(1)	19(1)	5(1)
C(5)	54(1)	42(1)	52(1)	1(1)	21(1)	1(1)
C(6)	41(1)	36(1)	39(1)	2(1)	10(1)	-1(1)
C(7)	41(1)	36(1)	43(1)	1(1)	12(1)	-1(1)
C(8)	49(1)	32(1)	64(1)	0(1)	24(1)	1(1)
C(9)	93(2)	49(1)	74(1)	12(1)	46(1)	-6(1)
C(10)	87(2)	55(1)	96(2)	11(1)	41(2)	-3(1)
C(11)	40(1)	35(1)	45(1)	1(1)	12(1)	-2(1)
C(12)	43(1)	40(1)	47(1)	-3(1)	13(1)	1(1)
C(13)	59(1)	40(1)	67(1)	-6(1)	25(1)	1(1)
C(14)	88(2)	55(1)	98(2)	-10(1)	53(2)	5(1)
O(1)	45(1)	73(1)	99(1)	21(1)	20(1)	-6(1)
O(2)	67(1)	48(1)	54(1)	7(1)	24(1)	-9(1)
O(3)	66(1)	40(1)	80(1)	-6(1)	37(1)	-7(1)

O(4)	53(1)	40(1)	66(1)	-6(1)	26(1)	1(1)
S(1)	47(1)	43(1)	55(1)	2(1)	23(1)	-2(1)

Table 5.	Hydrogen coordinates (x 10 ⁴) and isotropic displacement
paramete	ers (A^2 x 10^3) for a.

_		X	у	Z	U(eq)
	H(2)	1989	12191	918	61
	H(3)	758	13564	1635	68
	H(4)	-762	12808	2478	66
	H(5)	-1071	10657	2622	58
	H(9A)	-1707	7076	3701	81
	H(9B)	-465	6808	4700	81
	H(10A)	-1326	4917	3875	115
	H(10B)	49	5116	3706	115
	H(10C)	-1189	5383	2707	115
	H(13A)	1419	4890	-15	65
	H(13B)	2543	4768	1114	65
	H(14A)	3291	4238	-408	113
	H(14B)	4006	5457	186	113
	H(14C)	2887	5583	-939	113

Figure 1. ORTEP drawing of $C_{14}H_{14}O_4S$ with 50% probability ellipsoids, showing the atomic numbering scheme.

Figure 2. A packing view along the *a* direction

