Supplementary information

Facile synthesis of Bi₂S₃-C composite microspheres as low-cost counter electrodes for dye-sensitized solar cells

Xue-Qin Zuo, Xiao Yang , Lei Zhou, Bo Yang, Guang Li, Huai-Bao Tang , Hai-Jun Zhang , Ming-Zai Wu , Yong-Qing Ma and Shao-Wei Jin

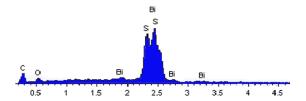
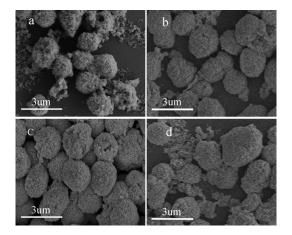



Fig.S1 EDS of the Bi₂S₃-Ccomposite material.

 $\textbf{Fig.S2} \; \text{SEM images of (a)} \; Bi_2S_3 - 0.39 - C \; (b) \; Bi_2S_3 - 0.77 - C \; (c) \; Bi_2S_3 - 1.53 - C \; and \; (d) \; Bi_2S_3 - 2.28 - C.$

The effect of the contents of carbon on the morphology of Bi₂S₃-C was investigated by SEM. As shown in Fig. S2, all of the samples exhibits the structure of porous microspheres. But the samples of Bi₂S₃-0.77-C and Bi₂S₃-1.53-C possess relativity homogeneous microspheres than the samples of Bi₂S₃-0.39-C and Bi₂S₃-2.28-C. This suggests that incorporation of suitable carbon is beneficial to gain homogeneous Bi₂S₃-C microspheres.

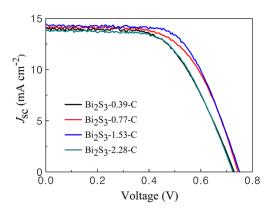


Fig.S3 J-V curves of DSSCs fabricated with different CEs of various contents of carbon.

Fig. S3 depicts the *J-V* curves for different CEs of various contents of carbon. The conversion efficiency of different samples are 5.89%, 6.36%, 6.72% and 5.88%, respectively. It can be found that the conversion efficiency of DSCCs increased with increasing the carbon content from 0.39 wt.% to 1.53 wt.%, and then decreased with further increasing the carbon content. This indicates that the catalytic abilities can be improved by the incorporation of suitable carbon.

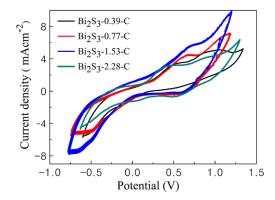


Fig.S4 Cyclic voltammograms (CVs) for the Bi₂S₃-C electrodes with different carbon contents.

Fig. S4 presents CV curves of the Bi_2S_3 -C electrodes with different carbon contents. Obviously, the sample of Bi_2S_3 -1.53-C demonstrates a superior catalytic activity than the other samples.

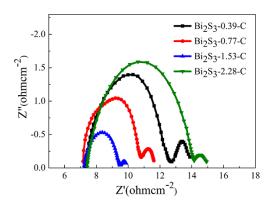


Fig.S5 Nyquist plots of EIS for symmetric cells fabricated with different CEs of various carbon content.

Fig. S5 shows the EIS for symmetric cells with CEs of different contents of carbon. Particularly, the sample of Bi_2S_3 -1.53-C demonstrates a smallest R_{ct} among all hybrid electrode, hinting excellent electrocatalytic activity.

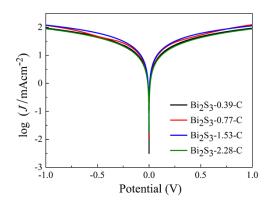


Fig.S6 Tafel-polarization curves for different CEs of various contents of carbon.

Fig. S6 exhibits the Tafel-polarization curves for different CEs of various contents of carbon. It can be found that the composite CE with 1.53wt.% carbon content show the largest J_0 and highest J_{lim} than other samples, which indicates the sample of Bi₂S₃-1.53-C demonstrate the most excellent catalytic activity for I_3^- reduction.