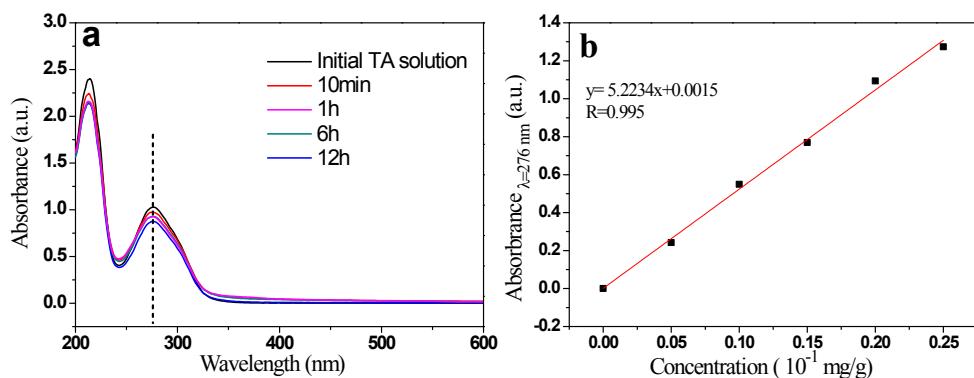
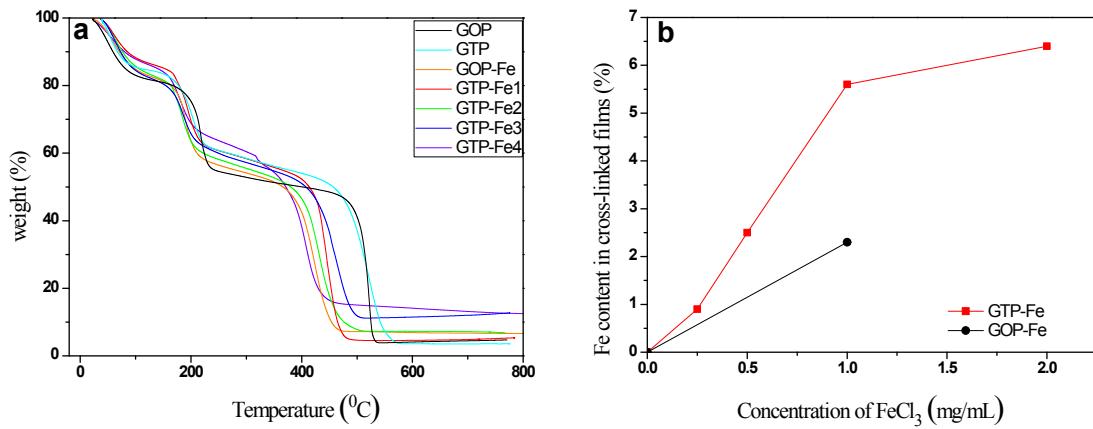



## SUPPORTING INFORMATION


# Byssal Threads Inspired Ionic Cross-Linked Narce-Like Graphene Oxide Paper with Superior Mechanical Strength

**Rui-Yang Liu, An-Wu Xu\***


Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale Department, University of Science and Technology of China, Hefei, 230026, P.R. China.  
E-mail: [anwuxu@ustc.edu.cn](mailto:anwuxu@ustc.edu.cn)

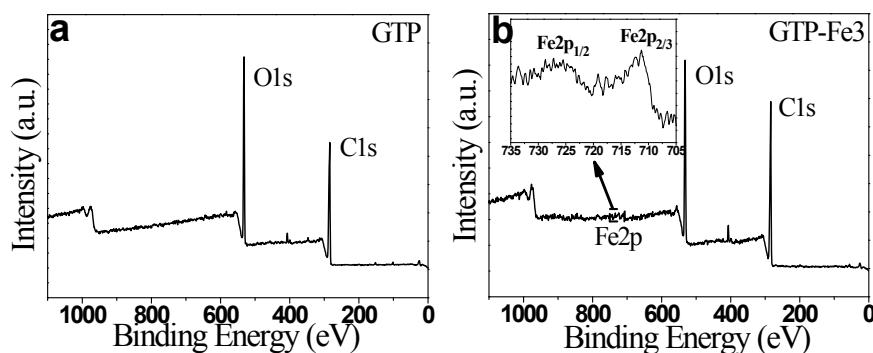


**Fig. S1** SEM image of GO nanosheets used in our experiment. The scale bar is 300 nm.

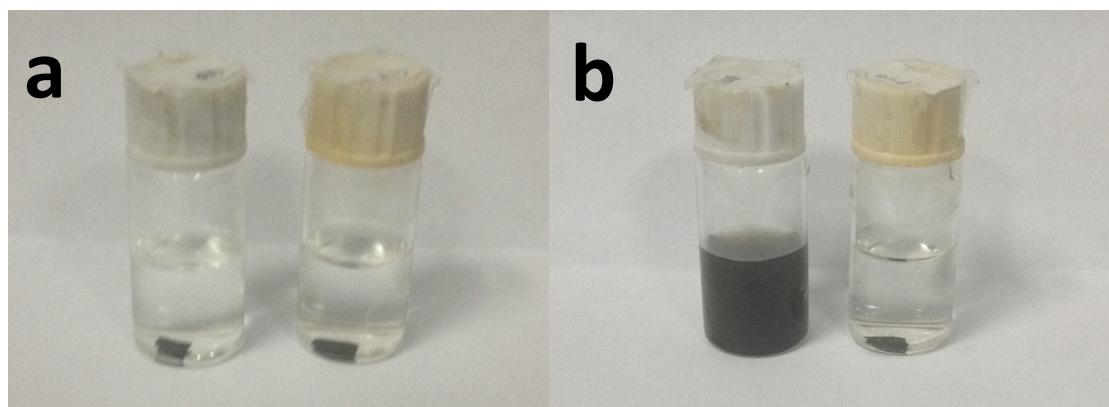


**Fig. S2** a) UV-Vis spectra of filtered GO-TA mixture solution of different absorption time. Initial concentrations of GO and TA were 0.4 mg/mL and 0.2 mg/mL, respectively. Each solution was diluted by water with 9 times of volume before UV-Vis measurement. b) The standard curve of tannic acid (TA).

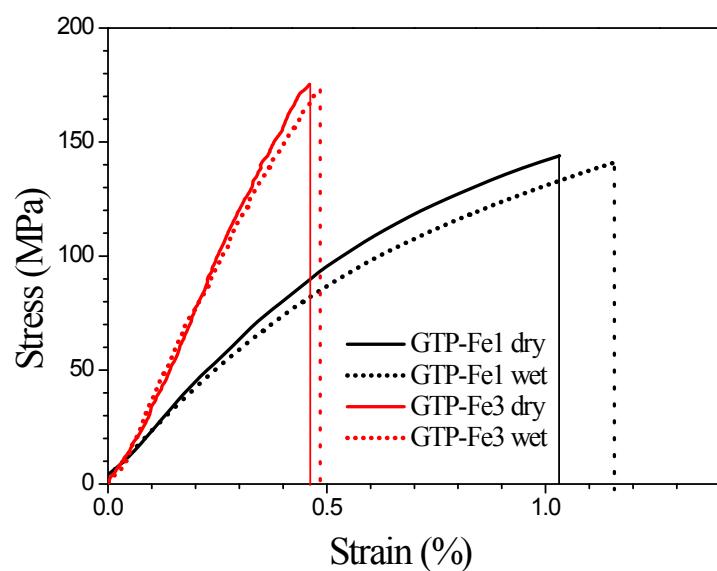



**Fig. S3** a) TGA curves of the respective papers. b) The relationship between the Fe content in cross-linked films and the concentration of FeCl<sub>3</sub> solution.

The Fe content in the paper was calculated from the remaining mass at 750 °C. Fe<sub>2</sub>O<sub>3</sub> was formed at 750 °C and the Fe content was determined as follow:


$$P_{Fe} = (P_{750} - P_{control-750}) \times (2M(Fe) \div M(Fe_2O_3)) = (P_{750} - P_{control-750}) \times 0.6994$$

P<sub>Fe</sub> is the Fe content of the tested sample;


P<sub>750</sub> is the remaining weight percentage of the tested sample and P<sub>control-750</sub> is the remaining weight percentage of the respective control sample (GOP or GTP).



**Fig. S4** (a) XPS wide scans of GTP; (b) XPS wide scans of GTP-Fe3, and the inset of Fe 2p spectra.



**Fig. S5** The digital images of pristine GOP (left) and GTP-Fe1 (right) before (a) and after (b) ultrasonication for 10 minutes, demonstrating the high stability of our obtained cross-linked GO film in water.



**Fig. S6** Stress-strain curves of the dry paper samples (solid curves) and wet paper samples (dotted curves). The wet samples were prepared by immersing the dry samples in water for 24 hours.

**Table S1** The comparison of mechanical proprieties of our Fe<sup>3+</sup>-TA cross-linked GOP with other GO based papers.

| Cross-linking Strategies | Stress [MPa]  | Young's modules [GPa] | Ultimate strain [%] | Reference |
|--------------------------|---------------|-----------------------|---------------------|-----------|
| GO-PAA                   | 91.9          | 33.3                  | 0.32                | 23        |
| GO-PMMA                  | 148.3         | 7.5                   | 3.17                | 25        |
| GO-PVA                   | 71            | 27.6                  | 0.27                | 25        |
| GO-DOPA-PEI              | 178.96        | 84.84                 | 0.24                | 29        |
| GO-Borate                | 185           | 127                   | 0.24                | 26        |
| GO-Mg <sup>2+</sup>      | 87.9          | 24.6                  | 0.4                 | 27        |
| GO-Ca <sup>2+</sup>      | 125.8         | 28.1                  | 0.5                 | 27        |
| GO-Fe <sup>3+</sup>      | 92.47         | 19.6                  | 1.02                | Our work  |
| GO-TA-Fe <sup>3+</sup>   | 138.83-169.27 | 23.1-49.7             | 0.97-0.41           | Our work  |

**Table S2** Complete results of the tensile tests.

| Sample    | Thickness (μm) | Width (mm) | Stress (MPa) | Strain (%) | Young's Modulus* (GPa) |
|-----------|----------------|------------|--------------|------------|------------------------|
| GOP-a1    | 17.2           | 6.71       | 80.78        | 1.44       | 10.2                   |
| GOP-a2    | 17.2           | 5.64       | 73.27        | 1.60       | 6.5                    |
| GOP-a3    | 17.2           | 5.64       | 83.95        | 1.52       | 7.8                    |
| GOP-b1    | 5.1            | 6.51       | 73.41        | 1.74       | 9.0                    |
| GOP-b2    | 5.1            | 7.35       | 77.20        | 1.82       | 6.3                    |
| GTP-a1    | 16.1           | 4.85       | 61.00        | 1.28       | 9.0                    |
| GTP-a2    | 16.1           | 4.85       | 63.18        | 1.44       | 7.1                    |
| GTP-a3    | 16.1           | 4.83       | 71.45        | 1.68       | 8.4                    |
| GTP-b1    | 4.5            | 5.16       | 77.72        | 1.04       | 10.6                   |
| GTP-b2    | 4.5            | 4.98       | 68.08        | 1.12       | 9.4                    |
| GOP-Fe-1  | 9.2            | 7.21       | 72.65        | 0.76       | 23.1                   |
| GOP-Fe-2  | 9.2            | 6.82       | 92.71        | 1.10       | 16.8                   |
| GOP-Fe-3  | 9.2            | 6.15       | 112.07       | 1.22       | 19.0                   |
| GTP-Fe1-1 | 9.0            | 6.56       | 137.89       | 1.02       | 25.3                   |
| GTP-Fe1-2 | 9.0            | 6.89       | 148.33       | 1.08       | 23.1                   |

|           |     |      |        |      |      |
|-----------|-----|------|--------|------|------|
| GTP-Fe1-3 | 9.0 | 6.89 | 129.21 | 0.82 | 20.9 |
| GTP-Fe2-1 | 7.6 | 7.12 | 135.40 | 0.70 | 29.3 |
| GTP-Fe2-2 | 7.6 | 8.20 | 146.07 | 0.61 | 30.4 |
| GTP-Fe2-3 | 7.6 | 6.68 | 165.76 | 0.74 | 28.8 |
| GTP-Fe3-1 | 4.1 | 8.03 | 166.92 | 0.39 | 52.0 |
| GTP-Fe3-2 | 4.1 | 7.46 | 160.73 | 0.37 | 49.1 |
| GTP-Fe3-3 | 4.1 | 7.46 | 174.14 | 0.44 | 47.9 |

\* Young's modulus is determined by fitting the stress-strain curve in the linear regime with a straight line.