Supporting information

for

Fluorescence enhancement, cellular imaging and biological investigation of chiral pyrrolidinols modified naphthalimide derivatives

Ke-Rang Wang,*^{*a,b*} Feng Qian,^{*a*} Rui-Xue Rong, ^{*c*} Zhi-Ran Cao, ^{*c*} Xiao-Man Wang, ^{*c*} and Xiao-Liu Li*^{*a,b*}

^{*a*} Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China. E-mail: <u>kerangwang@hbu.edu.cn; lixl@hbu.cn</u>. Tel: (+86)-312-5971116.

^{*b*} Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Baoding 071002, China.

^c Department of Immunology, School of Basic Medical Science, Hebei University, Baoding,P. R. China.

Scheme 1. 1) *N*,*N*-dimethylethylenediamine, EtOH; 2) 2-methoxyethanol, DIPEA, amino alcohols (L-prolinol, D-prolinol, R-3-hydroxypyrrolidine and S-3- hydroxypyrrolidine).

1. Experimental part

1.1 Measurements

¹H NMR and ¹³C NMR spectra were recorded on a Bruker 600 spectrometer. HRMS analysis was performed on an Apex Ultra 7.0T FT-MS (Bruker Dalonik Company). UV–Vis spectra were

recorded in a quartz cell (light path 10 mm or 5 mm) on a Shimadzu UV-3600 spectrophotometer equipped with a S-1700 temperature controller. Fluorescence spectra were performed on F-7000 (Hitachi Instruments). The fluorescence images were obtained using Olympus confocal laser scanning microscopy (Olympus Fluoview FV1000).

1.2 MTT assay

The compounds **NI1-4** were dissolved in phosphate buffered saline (PBS) and diluted to the required concentration with culture medium. The cytotoxicity was evaluated by MTT assay. Briefly, cells were plated in 96-well microassay culture plates (10^4 cells per well) and grown overnight at 37 °C in a 5% CO₂ incubator. The compounds **NI1-4** were then added to the wells to achieve final concentrations ranging from 10^{-7} to 10^{-4} M. Wells containing culture medium without cells were used as control blanks; wells containing culture medium and cisplatin or amonofide was used as positive control. The plates were incubated at 37 °C in a 5% CO₂ incubator for 48 h. Upon completion of the incubation, stock MTT (Sigma) dye solution ($20 \mu L$, 5 mg/ μL) was added to each well. After 4 h incubation, 2-propanol ($100 \mu L$) was added to solubilize the MTT formazan. The optical density of each well was then measured on a microplate spectrophotometer at a wavelength of 570 nm. The IC₅₀ value was determined from the plot of % viability against dose of complexes added.

1.3 Confocal microscopy study

The A549 cells were seeded 1 day before experiments in a 6-well plate at 4.0×10^5 cells/well. Then cells were incubated with NI1 (5.0 μ M), NI2 (4.0 μ M), NI3 (2.0 μ M) and NI4 (1.0 μ M) at 37 °C for 12 h. After incubation, the unbound molecules were washed third with PBS buffer.

1.4 Synthesis procedures and analytical data

General synthesis of NI1-4: In a 50-mL flask, 500 mg (1.44 mmol) of compound M-1 was dissolved in 10 mL of 2-methoxyethanol. Then, 2.88 mmol of amino alcohols (L-prolinol, D-prolinol, R-3-hydroxypyrrolidine and S-3- hydroxypyrrolidine) and 3 mL of DIPEA were added, and the mixture was heated under an N₂ atmosphere at 120°C for 24 h or 48 h. After the mixture was cooled to room temperature, the solvent was removed *in vacuo*. The solid obtained was purified by column chromatography to afford pure NI1-4 with the yields of 62.6%, 58.8%, 50.8% and 39.1%.

NI1: m. p. 92.4-94.2 °C ¹H NMR (CDCl₃, 600 MHz): δ1.82 (m, 1H), 2.09 (m, 1H), 2.16 (m, 1H),

2.31 (m, 1H), 2.72 (m, 6H), 3.11 (t, 2H, J = 6.0 Hz), 3.62 (t, 1H, J = 8.4 Hz), 3.75 (dd, 1H, J = 3.0 Hz, 11.4 Hz), 3.82 (dd, 1H, J = 4.8 Hz, 11.4 Hz), 4.13 (m, 1H), 4.31 (m, 1H), 4.38 (m, 2H), 7.06 (d, 1H, J = 8.4 Hz, Ar-H), 7.52 (t, 1H, J = 7.8 Hz, Ar-H), 8.28 (d, 1H, J = 8.4 Hz, Ar-H), 8.43 (d, 1H, J = 7.2 Hz, Ar-H), 8.48 (d, 1H, J = 8.4 Hz, Ar-H); ¹³C NMR (CDCl₃, 150 MHz): δ 25.64, 28.47, 36.33, 44.64, 56.19, 57.45, 61.26, 62.23, 110.81, 111.80, 122.08, 123.73, 124.34, 130.74, 130.78, 131.28, 132.13, 133.00, 153.47, 163.75, 164.51; HRMS (ESI): calcd. for C₂₁H₂₆N₃O₃: 368.1974, found 368.1969.

NI2: m.p. 89.2-90.6 °C ¹H NMR (CDCl₃, 600 MHz): *δ* 1.84 (m, 1H), 2.10 (m, 1H), 2.16 (m, 1H), 2.32 (m, 1H), 2.77 (m, 6H), 3.17 (t, 2H, J = 6.0 Hz, -CH₂), 3.64 (t, 1H, J = 8.4 Hz), 3.77 (dd, 1H, J = 3.0 Hz, 11.4 Hz), 3.82 (dd, 1H, J = 4.8 Hz, 11.4 Hz), 4.13 (m, 1H), 4.32 (m, 1H), 4.43 (m, 2H), 7.08 (d, 1H, J = 8.4 Hz, Ar-H), 7.54 (t, 1H, J = 7.8 Hz,), 8.33 (d, 1H, J = 8.4 Hz, Ar-H), 8.47 (d, 1H, J = 7.2 Hz, Ar-H), 8.49 (d, 1H, J = 8.4 Hz, Ar-H); ¹³C NMR (CDCl₃, 150 MHz): *δ* 25.63, 28.54, 35.62, 44.18, 55.97, 57.42, 61.32, 62.39, 111.01, 123.86, 124.48, 130.91, 131.45, 132.32, 133.18, 153.65, 163.86, 164.71; HRMS (ESI): calcd. for C₂₁H₂₆N₃O₃: 368.1974, found 368.1963. **NI3:** m.p. 102.3-104.6 °C. ¹H NMR (CD₃OD, 600 MHz): *δ* 2.17 (m, 1H), 2.22 (m, 1H), 2.57 (s, 6H), 2.93 (m, 2H), 3.67 (d, 1H, J = 10.8 Hz), 3.77 (t, 1H, J = 7.8 Hz), 4.10 (m, 2H), 4.34 (t, 2H, J = 7.2 Hz, -CH₂), 4.62 (m, 1H), 6.88 (d, 1H, J = 7.2 Hz, Ar-H), 8.72 (d, 1H, J = 9.0 Hz, Ar-H), 8.48 (d, 1H, J = 7.2 Hz, Ar-H), 8.72 (d, 1H, J = 9.0 Hz, Ar-H); ¹³C NMR (CD₃OD, 150 MHz): *δ* 37.23, 40.24, 47.71, 54.29, 60.45, 64.61, 73.70, 112.39, 113.03,

125.58, 126.22, 126.81, 134.86, 135.15, 136.71, 137.33, 157.23, 168.18, 169.02; HRMS (ESI): calcd. for C₂₀H₂₄N₃O₃: 354.1818, found 354.1813.

NI4: m.p. 110.4-112.8 °C. ¹H NMR (CDCl₃, 600 MHz): δ 2.19 (m, 2H), 2.39 (s, 6H), 2.69 (m, 2H), 3.61 (m, 2H), 3.73 (m, 1H), 3.99 (m, 1H), 4.06 (m, 1H), 4.33 (t, 2H, J = 7.2 Hz), 4.68 (s, 1H), 6.81 (d, 1H, J = 8.4 Hz, Ar-H), 7.55 (t, 1H, J = 7.2 Hz, Ar-H), 8.41 (d, 1H, J = 9.0 Hz, Ar-H), 8.54 (d, 1H, J = 8.4 Hz, Ar-H), 8.57 (d, 1H, J = 7.2 Hz, Ar-H); ¹³C NMR (CDCl₃, 150 MHz): δ 34.05, 37.59, 45.45, 50.56, 56.77, 60.95, 108.81, 123.28, 131.17, 131.89, 133.45, 152.72, 164.12, 164.92; HRMS (ESI): calcd. for C₂₀H₂₄N₃O₃: 354.1818, found 354.1809.

3

Fig. S1 ¹H NMR of compound NI1 (600 MHz, CDCl₃).

Fig. S2 ¹³C NMR of compound NI1 (150 MHz, CDCl₃).

Mass Spectrum SmartFormula Report

Analysis Info

Method

D:\Data\20140319\P7-APCI-pos_000002.d Analysis Name LC_MS_SmallMolecular Sample Name

Acquisition Date 2014-3-21 9:35:34

Operator Instrument ChuanqiZhou@163.com apex-Ultra

Acquisition Paramet	ter				
Polarity	Positive	Source	APCI	No. of Laser Shots	20
Averaged Scans	2	No. of Cell Fills	1	Laser Power	51.0 %
Broadband Low Mass	100.3 m/z	End Plate	1500.0 V	MALDI Plate	300.0 V
Broadband High Mass	1000.0 m/z	Capillary Entrance	2000.0 V	Imaging Spot Diameter	2000.0 µm
Acquisition Mode	Single MS	Skimmer 1	20.0 V		
Pulse Program	basic	Drying Gas Temperature	180.0 °C	Calibration Date	Sat Apr 6 08:55:38 2013
Source Accumulation	0.0 sec	Drying Gas Flow Rate	4.0 L/min	Data Acquisition Size	131072
Ion Accumulation Time	0.0 sec	Nebulizer Gas Flow Rate	1.0 L/min	Apodization	Sine-Bell Multiplication
Flight Time to Acq. Cell	0.0 sec			·	

Fig. S3 HRMS (ESI) of compound NI1.

Fig. S4 ¹H NMR of compound NI2 (600 MHz, CDCl₃).

Fig. S5 ¹³C NMR of compound NI2 (150 MHz, CDCl₃).

Fig. S6 HRMS (ESI) of compound NI2.

Fig. S7 ¹H NMR of compound NI3 (600 MHz, CD₃OD).

Fig. S8 ¹³C NMR of compound NI3 (150 MHz, CD₃OD).

Fig. S9 HRMS (ESI) of compound NI3.

Fig. S10 ¹H NMR of compound NI4 (600 MHz, CDCl₃).

Fig. S11. ¹³C NMR of compound NI4 (150 MHz, CDCl₃).

m/z

0.4

mSigma

7.6 10.5 even ok

Formula

C 20 H 24 N 3 O 3

a a min a sun da	IC ₅₀ (μM)				
compounds	Hela	MCF-7	SGC-7901	A549	
NI1	15.209±0.053	42.704±0.119	28.389±0.0499	5.4211±0.056	
NI2	21.343±0.021	99.662 ± 0.098	51.597±0.117	3.654 ± 0.023	
NI3	3.845±0.183	3.531±0.039	3.404 ± 0.274	1.961 ± 0.042	
NI4	3.249±0.312	3.686 ± 0.099	2.546 ± 0.307	0.874 ± 0.023	
Amonofide	4.365±0.135	8.022 ± 0.038	5.327 ± 0.200	1.595 ± 0.072	
Cisplatin	13.413±0.062	7.73±0.094	15.057 ± 0.102	4.776 ± 0.048	

Table S1. Cytotoxicity data for compounds NI1-4 (IC₅₀, μ M)

Fig. S13 UV-Vis spectra of compounds **NI1-4** (1×10^{-5} M) binding with Ct-DNA in phosphate buffer (10 mM, pH 7.4, 50 mM NaCl); Inset: the fitting curves at the maximum absorption band.

Compounds	T_m (°C)	ΔT_m (°C)
Ct-DNA	69.8	0
NI1	71.7	1.9
NI2	71.6	1.8
NI3	74.1	4.3
NI4	73.4	3.6

Table S2. Average T_m and ΔT_m for Ct-DNA in the absence and presence of NI1-4.

Fig. S14. The T_m curves of compounds **NI1-4** (5.0 × 10⁻⁶ M) binding with Ct-DNA (5.0 × 10⁻⁵ M) (69.8, 71.8, 71.7, 73.4, 74.0) in phosphate buffer (1 mM, pH 7.4, 5 mM NaCl).