Synthesis, structures, surface photovoltage and luminescent properties of two new nickel(II) carboxyphosphonates with a 3D framework structure
Hui Luo, Yan-Yu Zhu, Zhen-Gang Sun,* Cheng-Qi Jiao, Guang-Ning Zhang, Tong Sun, Ming-Xue Ma, and Wen-Zhu Li

Supplementary Materials

Fig. S1 The simulated XRD pattern of compound 1 (down) and experimental powder XRD pattern of compound 1 (up)

Fig. S2 The simulated XRD pattern of compound 2 (down) and experimental powder XRD pattern of compound 2 (up)
Fig. S3 The IR spectrum of compound 1.
Fig. S4 The IR spectrum of compound 2.

Fig. S5 The TG curve of compound 1.
Fig. S6 The TG curve of compound 2.
Fig. S7 The X-ray powder diffraction pattern of the final product in the thermal decomposition for compound **1**.

The final product is Ni$_2$P$_2$O$_7$ (JCPDS 01–074–1604).

Fig. S8 The X-ray powder diffraction pattern of the final product in the thermal decomposition for compound **2**.

The final product is Ni$_2$P$_2$O$_7$ (JCPDS 01–074–1604).
Fig. S9 Solid–state emission spectrum of 4,4′-bipy at room temperature.

Fig. S10 Solid–state emission spectrum of H$_2$L at room temperature.

Table S1 Selected bond angles (°) for compounds 1 and 2
<table>
<thead>
<tr>
<th>Compound</th>
<th>Bond</th>
<th>Angle</th>
<th>Bond</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O(4)–Ni(1)–O(1)</td>
<td>91.18(13)</td>
<td>O(9)–Ni(2)–O(10)#3</td>
<td>90.67(14)</td>
</tr>
<tr>
<td></td>
<td>O(4)–Ni(1)–O(3)#1</td>
<td>178.45(13)</td>
<td>O(2)–Ni(2)–O(10)</td>
<td>87.69(12)</td>
</tr>
</tbody>
</table>
Symmetry transformations used to generate equivalent atoms: #1 \(-x + 1/2, -y + 3/2, -z\); #2 \(-x + 1/2, y - 1/2, -z + 1/2\); #3 \(-x + 1/2, -y + 1/2, -z\); #4 \(-x + 1/2, y + 1/2, -z + 1/2\) for 1; #1 \(-x + 1/2, y + 1/2, -z + 1/2\); #2 \(-x, y, -z + 1/2\); #3 \(-x + 1/2, y - 1/2, -z + 1/2\) for 2.

<table>
<thead>
<tr>
<th>O(8)#2–Ni(2)–N(3)</th>
<th>95.9</th>
<th>P(2)–O(4)–Ni(1)</th>
<th>114.5(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(3)#2–Ni(2)–N(3)</td>
<td>179.75(10)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Symmetry transformations used to generate equivalent atoms: #1 \(-x + 1/2, -y + 3/2, -z\); #2 \(-x + 1/2, y - 1/2, -z + 1/2\); #3 \(-x + 1/2, -y + 1/2, -z\); #4 \(-x + 1/2, y + 1/2, -z + 1/2\) for 1; #1 \(-x + 1/2, y + 1/2, -z + 1/2\); #2 \(-x, y, -z + 1/2\); #3 \(-x + 1/2, y - 1/2, -z + 1/2\) for 2.