Supplementary Information

Effective removal of Cr(VI) through adsorption and reduction by magnetic mesoporous carbon incorporated with polyaniline

Guide Yang^{a, b}, Lin Tang^{a, b,*}, Ye Cai^{a, b}, Guangming Zeng^{a, b,*}, Pucan Guo^{a, b},

Guiqiu Chen^{a, b}, Yaoyu Zhou^{a, b}, Jing Tang^{a, b}, Jun Chen^{a, b}, Weiping Xiong^{a, b}

^a College of Environmental Science and Engineering, Hunan University, Changsha,

410082, PR China

^b Key Laboratory of Environmental Biology and Pollution Control, Hunan University,

Ministry of Education, Changsha 410082, PR China

*Corresponding author: E-mail: <u>tanglin@hnu.edu.cn</u> (Lin Tang), zgming@hnu.edu.cn (Guangming Zeng)

Tel.: +86-731-88822778; Fax: +86-731-88822778.

Preparation of SBA–15 templates. In a typical synthesis, 8g of P123 was added into 312 mL of 2 M HCl solution and the mixture was stirred for 4 h at 35 °C until surfactant P123 full dissolution. Next, 17.2 g of tetraethyl orthosilicate was dropwise added, and followed by 20 h mechanically stirring at 35 °C. Then, the resulting gels were transferred to the Teflon–lined sealed containers and were kept at 140 °C for 24 h under static hydrothermal conditions. The as–synthesized samples were recovered by filtration and washing. Subsequently, the samples were calcined at 550 °C in air for 4 h to remove the organic template P123. Thus, the as–synthesized SBA–15 was obtained.

Preparation of Fe/OMC. Magnetic ordered mesoporous nanocomposite (Fe/OMC) was synthesized by following a co–impregnation method. Typically, 1.0 g of as–synthesized SBA–15 was impregnated with 10 mL of multi–component alcohol solution containing 1.08 g Fe(NO₃)₃.9H₂O and 0.05 g oxalic acid, and then 2.0 mL of furfuryl alcohol was added dropwise into the above mixture. Following on it, the mixture thus prepared was heated at 90 °C for 10 h in air. Then, the resultant was calcinated at 900 °C for 2 h under flowing nitrogen atmosphere. Finally, the composite was recovered after dissolution of the silica framework in 2.0 mol/L of boiling NaOH solution, filtered, washed, dried at 60 °C and then stored in a nitrogen–filled glovebox until required.

Adsorbents	Surface area (m^2/g)	Pore size (nm)	Pore volume (cm ³ /g)
SBA-15	375.22	12.5	1.06
Fe/OMC	374.89	4.81	0.60
PANI-Fe/OMC	55.95	4.74	0.11

Table S1. Physical parameters of three mesoporous materials.

 Table S2. The percentage composition of each element in PANI–Fe/OMC before

 and after Cr(VI) removal.

Element compositions	С	0	Ν	Fe	Cr	Total
Before interaction	75.19%	10.64%	7.85%	6.32%	0	100%
After interaction	52.9%	30.54%	6.53%	5.82%	4.21%	100%

Fig. S1. N₂ sorption isotherms with inset the corresponding pore distribution curves of Fe/OMC and PANI–Fe/OMC.

Fig. S2. XPS wide scan, C 1s and Fe 2p spectra of PANI–Fe/OMC before (a, c, e) and after (b, d, f) Cr(VI) removal.

Fig. S3. Zeta potentials of magnetic mesoporous carbons as a function of solution pH.

Fig. S4. The total chromium and Cr(VI) removal by PANI–Fe/OMC. pH = 2.0; T = 298 K.

Fig. S5. Seven consecutive adsorption–desorption cycles of PANI–Fe/OMC for Cr(VI).