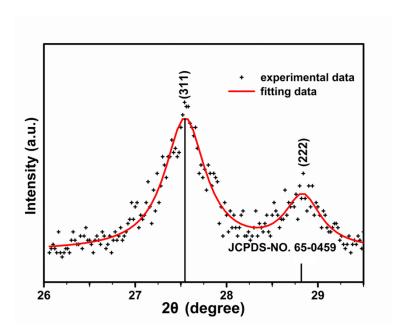
Supporting Information


Facile solvothermal synthesis of 3D flowerlike β -In₂S₃ microspheres and their photocatalytic activity performance

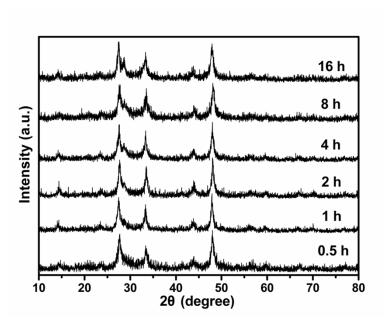
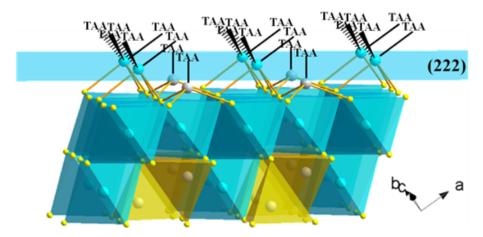
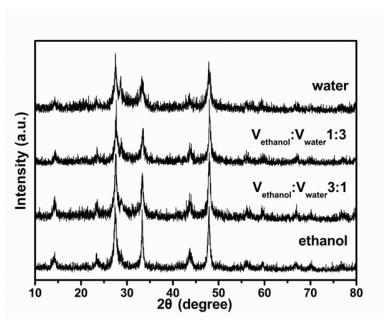
Caiying Wei,^{a,b} Wei Guo,^{a,b} Jiaqin Yang,^{a,b} Hongmin Fan,^{a,b} Jing Zhang^{a,b} and Wenjun Zheng *a,b

^aDepartment of Materials Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), TKL of Metal and Molecule-based Material Chemistry, College of Chemistry Nankai University, Tianjin, 300071, P. R. China.

^bCollaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.

E-mail: zhwj@nankai.edu.cn

Figure S1 Fitting curve (26° to 29.5° in 20) of as-prepared 3D flowerlike In_2S_3 microspheres obtained in ethanol-water system with the volume ratio of 1:1 for 24 h.

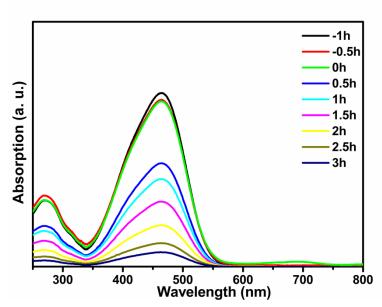

Figure S2 XRD patterns of In_2S_3 nanocrystals synthesized at different reaction durations in ethanol-water system with the volume ratio of 1:1.

Figure S3 Schematic diagram of a projected view as TAA absorbed on the (222) surface of In_2S_3 to form a layer ($\bigcirc S$, \bigcirc four-coordinated In and \bigcirc six-coordinated In).

Figure S4 XRD patterns of products obtained in ethanol-water system with the volume ratio of 1:0, 3:1, 1:3 and 0:1, respectively.

 $\label{eq:Figure S5} \textbf{Figure S5} \ \ \text{Time-dependent UV-vis absorption spectra using as-prepared 3D} \\ \ \ \text{flowerlike In}_2S_3 \ \text{microspheres as photocatalyst.}$