# Asymmetric $\alpha$ -oxyamination of aldehydes by synergistic catalysis of imidazolethiones and metal salts

Xianrui Liang, Na Li, Xinlei Chen, and Weike Su\*

Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China

### **Electronic Supplementary Information**

#### **Content**

| General Experimental Details                                                     | S2-S5         |
|----------------------------------------------------------------------------------|---------------|
| General Information:                                                             | S2            |
| Typical procedures for the synthesis of imidazolethione 2a:                      | S2            |
| General procedure for the the synthesis of (S)-3-cyclohexyl-2-((2,2,6,6          | -tetrameth-yl |
| piperidin-1-yl)oxy)propan-1-ol (5a)                                              | S2            |
| Table 1 Solvent screening for α-oxyamination of aldehyde:                        | S3            |
| Table 2 Synergistic metal salt screening for $\alpha$ -oxyamination of aldehyde: | S3            |
| Table 3 Optimization of reaction conditions for oxidation of alcohols:           | S4            |
| Table 4 Investigation of the amount of TEMPO                                     | S4            |
| Table 5 Investigation of the amount of CuCl <sub>2</sub>                         | S5            |
| Experimental characterization data for compounds (5a-5j)                         | S6-S8         |
| NMR spectra and HPLC analyses for products (5a-5j)                               | S9-S28        |
| NMR spectra                                                                      | S9            |
| HPLC analyses                                                                    | S19           |
| Reference:                                                                       | S29           |

#### **General Experimental Details**

#### **General Information:**

All commercial solvents and reagents were used as obtained without further purification. Flash column chromatography was performed using silica-gel (200-400 mesh). Optical rotations were measured on Perkin Elmer Model 341 digital polarimeter. Mass spectra were measured with Termo Finnigan LCQ-Advantage. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were recorded at VARIAN-400 operating at 400 MHz and 100 MHz respectively, and chemical shifts were referenced to internal tetramethylsilane (TMS,  $\delta = 0.0$  ppm) for <sup>1</sup>H, the central line of CDCl<sub>3</sub> ( $\delta = 77.0$  ppm) for <sup>13</sup>C. Enantiomeric excesses of products were determined by HPLC using a Daicel Chiralcel AD-H, OD-H or AY-H column and eluting with hexane/*i*-PrOH.

#### Typical procedures for the synthesis of imidazolethione 2a:

Imidazolidinones were prepared according to the literature<sup>1</sup>. Lawsson's reagent was used as the thio reagent of carbonyl. Lawsson's reagent (2.43 g, 6 mmol) were added to the solution of imidazolidinone **1a** (2.18 g, 10 mmol) in 30 mL toluene. The reaction mixture was stirred at 70  $^{\circ}$ C under nitrogen atmosphere for the given time (monitored by TLC). Then the solvent was evaporated under vacuum, and the residue was purified by flash column chromatography over silica gel (petroleum ether/CH<sub>2</sub>Cl<sub>2</sub>/EtOAc 4:1:1) to get the corresponding imidazolethione **2a** in 95% yield. The obtained imidazolidinones catalyst (2.34 g, 10 mmol) was added to a dried round bottom flask with 10 mL of ether and cooled to 0  $^{\circ}$ C. While stirring vigorously, TFA (1.20 g, 10.5 mmol) was added dropwise, and the cooling bath was removed. The mixture was stirred for 0.5 h, while slowly warming to room temperature, after which it was filtered, and the solid was washed with 30 mL EtOAc (10 ml  $\times$ 3) to yield the catalyst salt as a white solid.

## General procedure for the the synthesis of (S)-3-cyclohexyl-2-((2,2,6,6-tetrameth-yl piperidin-1-yl)oxy)propan-1-ol (5a)

A mixture of NaBr (0.021 g, 0.2 mmol), TEMPO (0.016 g, 0.1 mmol), and 3-phenylpropanol (0.136 g, 1 mmol) in  $CH_2Cl_2$  (1 mL) was stirred at 70 °C. 10% NaClO aqueous solution (1.120 g, 1.5 mmol, pH = 8.5-9.5, which was adjusted by NaHCO<sub>3</sub>) was added dropwise. The mixture was stirred for 15 minutes at 0 °C. When the oxidation reaction was finished, the  $\alpha$ -oxyamination reaction was carried out without isolating intermediates.  $H_2O$  (2 mL), acetone (1 mL), catalyst salt **2a** (0.070 g, 0.2 mmol),  $CuCl_2$  (0.014 g, 0.1 mmol) and TEMPO (0.234 g, 1.5 equiv.) were added and the mixture were stirred at -20 °C for 48 h until the reaction was judged to be complete by TLC. To the mixture in EtOH (5 mL), cooled to 0 °C, was added NaBH<sub>4</sub> (0.076 g, 2 equiv.). The resulting suspension was stirred for 0.5 h and the solution was filtered over silica gel. The filtrate was extracted with  $CH_2Cl_2$  (10mL × 3). The combined organic layer was dried over  $Na_2SO_4$ , The solvent was removed with a rotary evaporator. The residue was purified silica-gel chromatography (petroleum ether/EtOAc 15:1) to afford the desired product **5a**.

Table 1 Solvent screening for  $\alpha$ -oxyamination of aldehyde:

| Entry | Solvent                     | Yield <sup>b</sup> (%) | ee <sup>c</sup> (%) |
|-------|-----------------------------|------------------------|---------------------|
| 1     | DMF                         | 65                     | 73                  |
| 2     | actone                      | 24                     | n.d. <sup>d</sup>   |
| 3     | i-PrOH                      | 13                     | n.d.                |
| 4     | $CH_2Cl_2$                  | trace                  | n.d.                |
| 5     | THF                         | trace                  | n.d.                |
| 6     | CH <sub>3</sub> CN          | trace                  | n.d.                |
| 7     | MeOH                        | 20                     | n.d.                |
| 8     | $H_2O$                      | 85                     | 75                  |
| 9     | $H_2O/DMF (v/v = 4:1)$      | 73                     | 67                  |
| 10    | $H_2O/i$ -PrOH (v/v = 4:1)  | 63                     | 57                  |
| 11    | $H_2O/THF (v/v = 4:1)$      | 77                     | 70                  |
| 12    | $H_2O/CH_2Cl_2(v/v = 4:1)$  | 85                     | 74                  |
| 13    | $H_2O/CH_2Cl_2$ (v/v = 1:1) | 53                     | 65                  |
| 13    | $H_2O/CH_2Cl_2$ (v/v = 1:4) | 8                      | n.d.                |

<sup>&</sup>lt;sup>a</sup> Reaction condition: **3a** (1 mmol), TEMPO (2 mmol), catalyst (20 mol%), TFA (20 mol%), FeCl<sub>3</sub> (1 equiv.), Solvent (2 mL), r.t., 3 h; NaBH<sub>4</sub> (2 equiv.), 0 °C; <sup>b</sup> Isolated yield after column chromatography. <sup>c</sup> Enantiomeric excess determined by HPLC analysis. <sup>d</sup> not determined.

Table 2 Synergistic metal salt screening for  $\alpha$ -oxyamination of aldehyde:

| Entry | Metal             | T (°C) | t (h) | Yield <sup>b</sup> (%) | ee <sup>c</sup> (%) |
|-------|-------------------|--------|-------|------------------------|---------------------|
| 1     | FeCl <sub>3</sub> | 25     | 3     | 85                     | 75                  |
| 2     | $Fe_2(SO_4)_3$    | 25     | 3     | 78                     | 73                  |
| 3     | Fe $(NO_3)_3$     | 25     | 3     | 79                     | 68                  |
| 4     | $FeCl_2$          | 25     | 3     | 83                     | 72                  |
| 5     | $FeSO_4$          | 25     | 3     | 77                     | 72                  |
| 6     | $CuCl_2$          | 25     | 3     | 85                     | 80                  |
| 7     | $CuSO_4$          | 25     | 3     | 77                     | 73                  |
| 8     | $Cu(OTf)_2$       | 25     | 3     | 75                     | 72                  |

| 9               | Cu(OAC) <sub>2</sub> | 25  | 3  | 73 | 63 |
|-----------------|----------------------|-----|----|----|----|
| 10              | CuCl                 | 25  | 3  | 83 | 85 |
| 11              | CuBr                 | 25  | 3  | 80 | 83 |
| 12 <sup>d</sup> | CuCl                 | -10 | 24 | 74 | 78 |
| 13 <sup>e</sup> | CuCl                 | -20 | 48 | 65 | 72 |
| 14 <sup>e</sup> | $CuCl_2$             | -20 | 48 | 83 | 89 |
| 15 <sup>f</sup> | $CuCl_2$             | -20 | 48 | 80 | 90 |

<sup>&</sup>lt;sup>a</sup>Reaction condition: **3a** (1 mmol), TEMPO (2 mmol), **2a** (20 mol%), TFA (20 mol%), metal (1 equiv.), H<sub>2</sub>O (2 mL), NaBH<sub>4</sub> (2 equiv.). <sup>b</sup> Isolated yield after column chromatography. <sup>c</sup> Enantiomeric excess determined by HPLC analysis. <sup>d</sup> H<sub>2</sub>O/acetone (v/v = 4:1). <sup>e</sup> H<sub>2</sub>O/acetone (v/v = 2:1). <sup>f</sup> CuCl<sub>2</sub> (10 mol%), TEMPO (1.5 equiv.).

 Table 3
 Optimization of reaction conditions for oxidation of alcohols:

| Entry | NaBr (mol%) | TEMPO (mol%) | NaClO <sup>a</sup> (equiv.) | Yield <sup>b</sup> (%) |
|-------|-------------|--------------|-----------------------------|------------------------|
| <br>1 | 10          | 10           | 1.2                         | 86                     |
| 2     | 20          | 10           | 1.2                         | 95                     |
| 3     | 25          | 10           | 1.2                         | 94                     |
| 4     | 20          | 20           | 1.2                         | 93                     |
| 5     | 20          | 30           | 1.2                         | 93                     |
| 6     | 20          | 10           | 1.5                         | 90                     |
| 7     | 20          | 10           | 1.7                         | 85                     |
| 8     | 20          | 10           | 2.0                         | 74                     |
|       |             |              |                             |                        |

<sup>&</sup>lt;sup>a</sup> 10% NaClO aqueous solution. <sup>b</sup> Isolated yield after column chromatography.

Table 4 Investigation of the amount of TEMPO

| Entry | TEMPO (equiv.) | Yield <sup>b</sup> (%) | ee <sup>c</sup> (%) |
|-------|----------------|------------------------|---------------------|
| 1     | 2.5            | 84                     | 88                  |
| 2     | 2              | 83                     | 89                  |
| 3     | 1.8            | 82                     | 88                  |
| 4     | 1.5            | 81                     | 90                  |
| 5     | 1.3            | 72                     | 90                  |
| 6     | 1.0            | 65                     | 89                  |

48 h, NaBH<sub>4</sub>(2 equiv.), 0 °C, 0.5 h; <sup>b</sup> Isolated yield after column chromatography. <sup>c</sup>Enantiomeric excess determined by HPLC analysis.

Table 5 Investigation of the amount of CuCl<sub>2</sub>

| Entry | CuCl <sub>2</sub> (equiv.) | Yield <sup>b</sup> (%) | ee <sup>c</sup> (%) |
|-------|----------------------------|------------------------|---------------------|
| 1     | 1                          | 83                     | 89                  |
| 2     | 0.8                        | 83                     | 89                  |
| 3     | 0.6                        | 82                     | 88                  |
| 4     | 0.4                        | 82                     | 89                  |
| 5     | 0.2                        | 81                     | 90                  |
| 6     | 0.1                        | 80                     | 90                  |
| 7     | 0.05                       | 71                     | 90                  |

<sup>&</sup>lt;sup>a</sup>Reaction condition: **3a** (1 mmol), TEMPO (1.5 mmol), catalyst **2a** (20 mol%), TFA (20 mol%), H<sub>2</sub>O (2 mL), actone (1 mL), -20 ℃, 48 h, NaBH<sub>4</sub>(2 equiv.), 0 ℃, 0.5 h; <sup>b</sup> Isolated yield after column chromatography. <sup>c</sup> Enantiomeric excess determined by HPLC analysis.

#### Experimental characterization data for compounds (5a-5j)

#### (S)-3-phenyl-2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)propan-1-ol (5a)

247.4 mg, 85% yield (colorless oil);  $[a]_D^{25} = -65.4$  (c = 0.52, CH<sub>2</sub>Cl<sub>2</sub>); The enantiomeric purity was determined by HPLC (210 nm, 25 °C)  $t_R = 8.0$  min (major);  $t_R = 9.8$  min (minor) [Chiralcel OD-H (0.46 cm × 25cm) (from Daicel Chemical Ind., Ltd.) hexane/i-PrOH, 98/2, 0.8 mL/min] as 90% *ee*. MS (ESI): 292.1 [M+H]<sup>+</sup>.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.29-7.15 (m, 5H), 5.74 (br, 1H), 4.50-4.41 (m, 1H), 4.00-3.92 (m, 1H), 3.64 (d, J = 11.8 Hz, 1H), 2.65 (ddd, J = 19.0, 13.6, 6.2 Hz, 2H), 1.63-1.33 (m, 6H), 1.29 (s, 3H), 1.21 (s, 3H), 1.11 (s, 3H), 0.97 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 138.0, 129.1, 127.8, 125.8, 80.9, 67.7, 40.2, 39.8, 37.6, 34.5, 32.4, 20.5, 20.2, 17.1.

#### (S)-2-phenyl-2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)ethanol (5b)

260.4 mg, 94% yield (colorless oil);  $[\alpha]_D^{25} = -4.53$  (c = 0.40, CH<sub>2</sub>Cl<sub>2</sub>); The enantiomeric purity was determined by HPLC (210 nm, 25 °C)  $t_R = 7.3$  min (major);  $t_R = 8.0$  min (minor) [Chiralcel AY-H (0.46 cm × 25cm) (from Daicel Chemical Ind., Ltd.) hexane/i-PrOH, 98/2, 1.0 mL/min] as 4% ee. MS (ESI): 278.2 [M+H]<sup>+</sup>.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.39-7.22 (m, 5H), 5.86 (br, 1H), 5.31-5.25 (m, 1H), 4.20 (dd, J = 12.2, 9.6 Hz, 1H), 3.70 (d, J = 11.8 Hz, 1H), 1.75-1.44 (m, 9H), 1.33 (s, 3H), 1.21 (s, 3H), 1.14 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 138.9, 128.19, 127.7, 126.7, 83.87, 69.4, 61.6, 60.5, 40.45, 34.6, 32.86, 20.9, 20.59, 17.3.

#### (S)-4-phenyl-2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)butan-1-ol (5c)

244 mg, 80% yield (colorless oil);  $[a]_D^{25} = -53.5$  (c = 1.42, CH<sub>2</sub>Cl<sub>2</sub>); The enantiomeric purity was determined by HPLC (210 nm, 25 °C)  $t_R = 12.6$  min (minor);  $t_R = 14.7$  min (major) [Chiralcel OD-H (0.46 cm × 25cm) (from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 98/2, 0.8mL/min] as 89% ee. MS (ESI): 306.4 [M+H]<sup>+</sup>.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.28-7.14 (m, 5H), 6.00 (br, 1H), 4.30-4.24 (m, 1H), 4.00 (dd, J = 12.0, 10.0 Hz, 1H), 3.58 (d, J = 11.6 Hz, 1H), 2.85-2.78 (m, 1H), 2.73-2.60 (m, 1H), 1.70-1.46 (m, 8H), 1.34 (s, 3H), 1.25 (s, 3H), 1.20 (s, 3H), 1.13 (s, 3H).

 $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 141.8, 128.2, 125.7, 79.5, 68.5, 61.6, 60.0, 40.5, 40.0, 34.6, 33.0, 32.6, 32.2, 20.6, 17.3.

#### (S)-2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)butan-1-ol (5d)

OTMP 104 mg, 80% yield (colorless oil);  $[\alpha]_D^{25} = -63.3$  (c = 0.98, CH<sub>2</sub>Cl<sub>2</sub>); The enantiomeric purity was determined by HPLC (226 nm, 25 °C)  $t_R = 11.5$  min (minor);  $t_R = 12.1$  min (major) [Chiralcel AD-H (0.46 cm × 25cm) (from Daicel

Chemical Ind., Ltd.) hexane/i-PrOH, 98/2, 0.4 mL/min] as 98% ee. MS (ESI): 130.0 [M+H]<sup>+</sup>.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 6.14 (br, 1H), 4.37-4.32 (m, 1H), 3.93 (dd, J = 11.8, 9.8 Hz, 1H), 3.53 (d, J = 11.6 Hz, 1H), 1.74-1.44 (m, 8H), 1.34 (s, 3H), 1.33 (s, 3H), 1.17 (s, 3H), 1.10 (s, 3H), 1.06-0.82 (m, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 81.11, 67.75, 61.15, 59.48, 40.06, 39.63, 34.39, 32.11, 23.91, 20.17, 20.08, 16.96, 10.15.

#### (S)-2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)hexan-1-ol (5e)

OTMP 223.6mg, 87% yield (colorless oil);  $[a]_D^{25} = -42.7$  (c 0.50, CH<sub>2</sub>Cl<sub>2</sub>); The enantiomeric purity was determined by HPLC (226 nm, 25 °C)  $t_R = 22.5$  min (minor);  $t_R = 25.6$  min (major) [Chiralcel OD-H (0.46 cm × 25cm) (from Daicel Chemical Ind., Ltd.) hexane/i-PrOH, 99.9/0.1, 0.2 mL/min $\rightarrow$ 0.6 mL/min] as 89% ee. MS (ESI): 258.2 [M+H]<sup>+</sup>.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 6.04 (br, 1H), 4.39-4.10 (m, 1H), 3.95 (dd, J = 12.0, 9.8 Hz, 1H), 3.57 (d, J = 11.8 Hz, 1H), 1.70-1.34 (m, 12H), 1.33 (s, 3H), 1.32 (s, 3H), 1.17 (s, 3H), 1.11 (s, 3H), 0.90 (t, J = 7.0 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 79.90, 68.50, 61.40, 59.70, 40.3, 39.8, 34.7, 32.3, 30.8, 28.1, 22.9, 20.4, 20.3, 17.2, 14.0.

#### (S)-2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)octan-1-ol (5f)

233.2 mg, 88% yield (colorless oil);  $[\alpha]_D^{25} = -67.4$  (c = 0.65, CH<sub>2</sub>Cl<sub>2</sub>); The enantiomeric purity was determined by HPLC (226 nm, 25 °C) t<sub>R</sub> = 11.9 min (minor); t<sub>R</sub> =10.4 min (major) [Chiralcel OD-H (0.46 cm × 25cm) (from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 99.9/0.1, 0.6 mL/min] as 97% *ee*. MS (ESI): 286.2 [M+H]<sup>+</sup>.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 6.03 (br, 1H), 4.37-4.15 (m, 1H), 3.95 (dd, J = 12.0, 9.8 Hz, 1H), 3.56 (dd, J = 12.0, 1.8 Hz, 1H), 1.73-1.23 (m, 22H), 1.17 (s, 3H), 1.10 (s, 3H), 0.89 (t, J = 6.8 Hz, 3H).

 $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 79.90, 68.6, 61.5, 59.8, 40.3, 39.9, 34.7, 32.4, 31.8, 31.1, 29.5, 25.9, 22.7, 20.5, 20.4, 17.2, 14.2.

#### (S)-3-methyl-2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)butan-1-ol (5g)

183.0 mg, 75% yield (colorless oil);  $[\alpha]_D^{25} = -57.8$  (c = 1.26, CH<sub>2</sub>Cl<sub>2</sub>); The enantiomeric purity was determined by HPLC (226 nm, 25 °C).  $t_R = 8.2$  min (minor);  $t_R = 9.7$  min (major) [Chiralcel AD-H (0.46 cm × 25cm). (from Daicel Chemical Ind., Ltd.) hexane/i-PrOH, 98/2, 0.5 mL/min] as 98% ee. MS (ESI): 244.0 [M+H]<sup>+</sup>.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 6.15 (br, 1H), 4.26-3.97 (m, 2H), 3.78-3.46 (m, 1H), 1.75-1.41 (m, 7H), 1.34 (s, 3H), 1.32 (s, 3H), 1.18 (s, 3H), 1.13 (s, 3H), 0.97 (s, 3H), 0.95 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 83.9, 66.6, 61.6, 59.9, 40.3, 39.9, 34.6, 32.1, 30.5, 20.4, 20.3, 19.5, 18.0, 17.1.

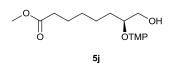
#### (2S)-3,7-dimethyl-2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)oct-6-en-1-ol (5h)

204.2 mg, 77% yield (colorless oil);  $[\alpha]_D^{25} = -64.0$  (c = 1.00, CH<sub>2</sub>Cl<sub>2</sub>); The enantiomeric purity was determined by HPLC (226 nm, 25 °C).  $t_R = 22.3$  min (major);  $t_R = 24.3$ min (minor) [Chiralcel OD-H (0.46 cm × 25

cm). (from Daicel Chemical Ind., Ltd.) hexane/i-PrOH, 99.9/0.1, 0.2 mL/min $\rightarrow$ 0.6 mL/min] as 99% ee. MS (ESI): 312.0[M+H] $^+$ .

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 6.01 (br, 1H), 5.08 (t, J = 6.8 Hz, 1H), 4.41-3.96 (m, 2H), 3.60 (dd, J = 25.6, 10.6 Hz, 1H), 2.09-1.87 (m, 2H), 1.69 (s, 3H), 1.61 (s, 3H), 1.56 -1.20 (m, 15H), 1.18 (s, 3H), 1.13 (s, 3H), 0.94 (d, J = 6.8 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 131.2, 124.2, 83.4, 82.3, 67.1, 66.1, 61.6, 60.0, 40.4, 40.0, 35.5, 35.1, 34.7, 34.1, 32.5, 32.3, 25.9, 25.7, 20.4, 17.7, 17.1, 16.1, 14.6.


#### (S)-3-cyclohexyl-2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)propan-1-ol (5i)

249.5 mg, 84% yield (colorless oil);  $[\alpha]_D^{25} = -40.28$  (c = 1.40, CH<sub>2</sub>Cl<sub>2</sub>); The enantiomeric purity was determined by HPLC (226 nm, 25 °C).  $t_R = 14.8$  min (major);  $t_R = 15.5$ min (minor) [Chiralcel AD-H (0.46 cm × 25 cm). (from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 99.5/0.5, 0.5 mL/min] as 95% *ee*. MS (ESI): 298.1  $[M+H]^+$ .

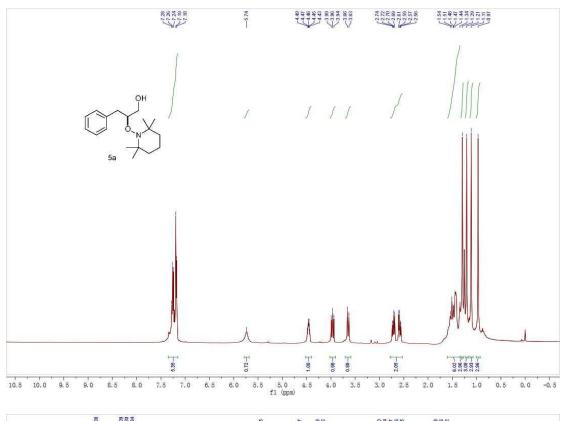
<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 6.16 (br, 1H), 4.37-4.32 (m, 1H), 3.93 (dd, J = 11.8, 9.8 Hz, 1H), 3.53 (d, J = 11.6 Hz, 1H), 1.83-1.36 (m, 12H), 1.34 (s, 3H), 1.33-1.29 (m, 4H), 1.29-1.18 (m, 3H), 1.17 (s, 3H), 1.10 (s, 3H), 1.06-0.81 (m, 3H).

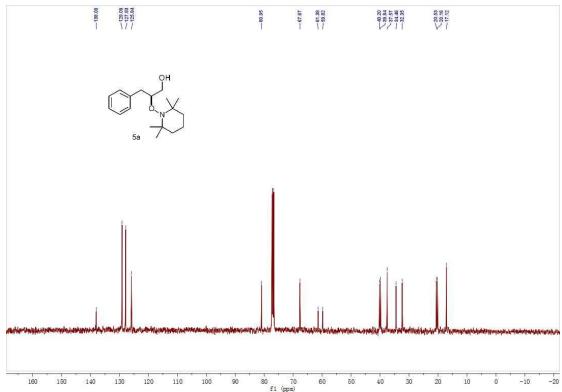
<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 77.50, 68.9, 61.3, 59.6, 40.3, 39.8, 38.7, 34.6, 34.2, 34.1, 33.2, 32.3, 26.5, 26.3, 26.2, 20.4, 20.3, 17.1.

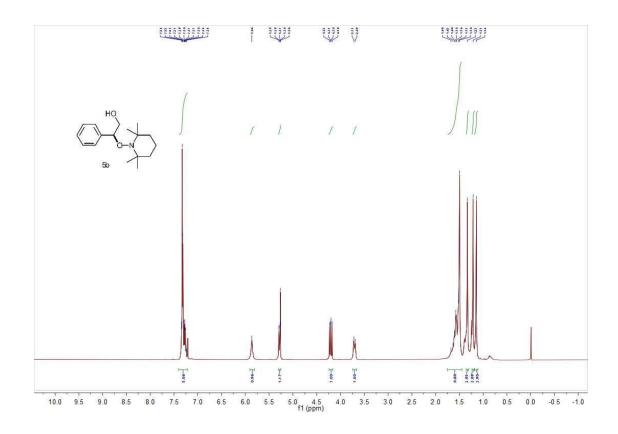
#### (S)-methyl 8-hydroxy-7-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)octanoate (5j)

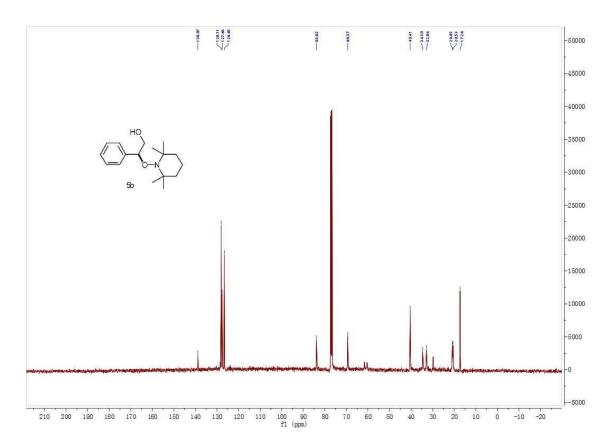


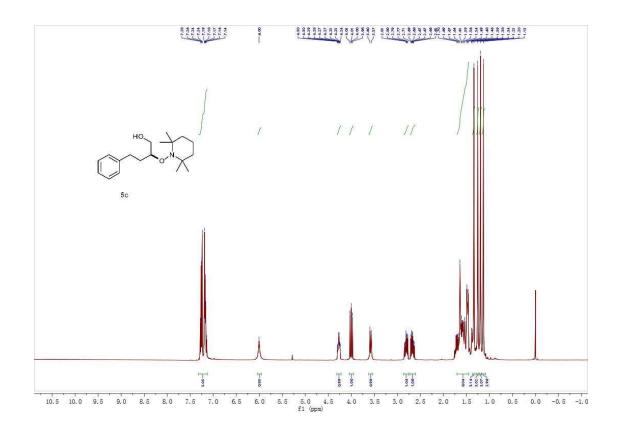
9.3 mg, 87% yield (colorless oil);  $[\alpha]_D^{25} = -64.6$  (c = 0.62, CH<sub>2</sub>Cl<sub>2</sub>); The enantiomeric purity was determined by HPLC (226 nm, 25 °C).  $t_R = 17.8$  min (minor);  $t_R = 20.1$ min (major) [Chiralcel OD-H (0.46 cm × 25cm). (from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH,


99/1, 0.4 mL/min] as 97% ee. MS (ESI): 330.1 [M+H]<sup>+</sup>.

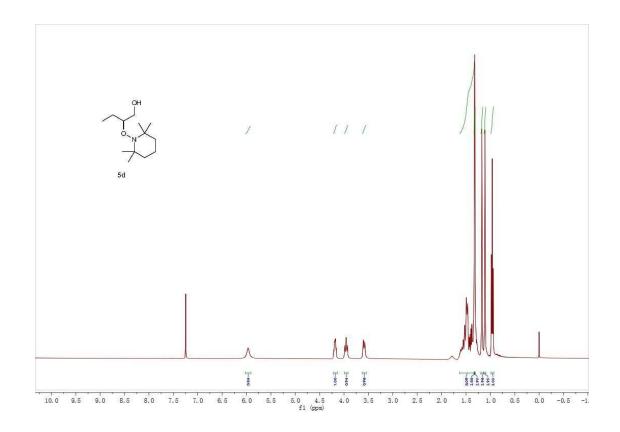

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 6.01 (br, 1H), 4.34-4.18 (m, 1H), 4.31-4.24 (m, 1H), 3.66 (s, 3H), 3.62-3.50 (m, 1H), 2.31 (t, J = 7.6 Hz, 1H), 1.73-1.22 (m, 20H), 1.17 (s, 3H), 1.11 (s, 3H).

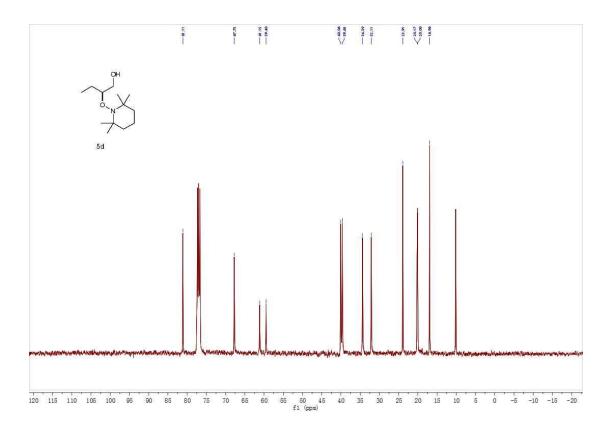

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 173.4, 80.0, 68.1, 61.3, 59.7, 51.1, 40.1, 39.6, 34.4, 33.8, 32.1, 30.7, 29.1, 25.3, 24.6, 20.3, 20.2, 17.0.

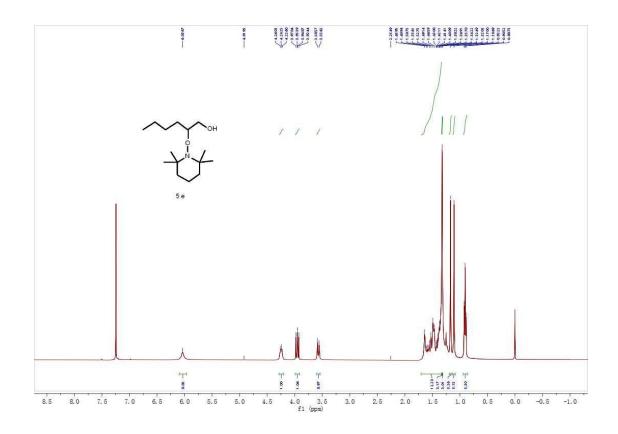

#### NMR spectra and HPLC analyses for products (5a-5j)

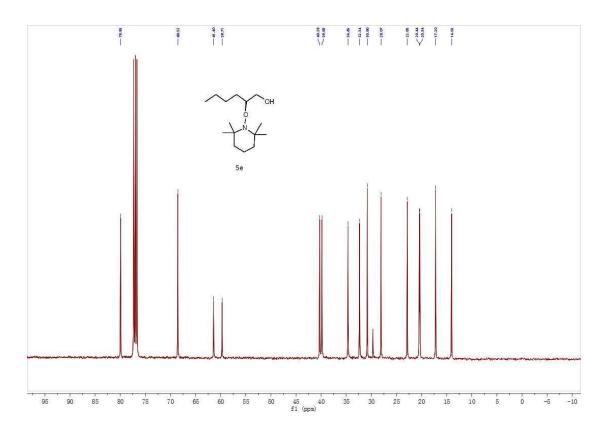

#### NMR spectra

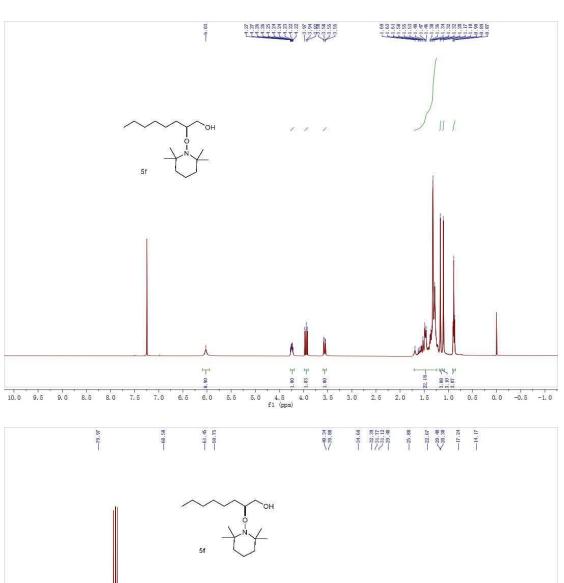


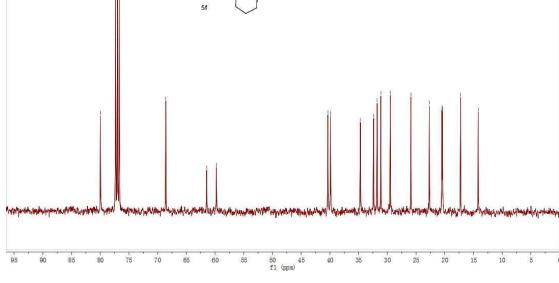


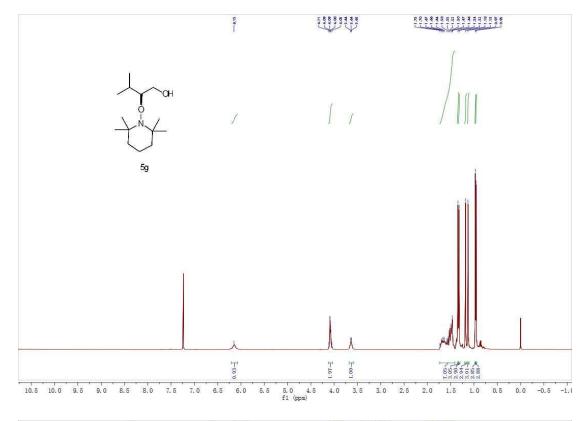



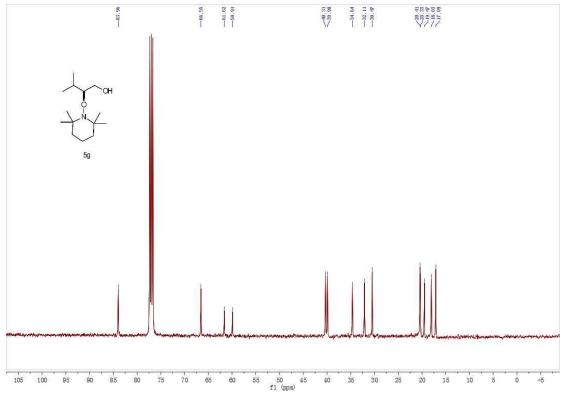



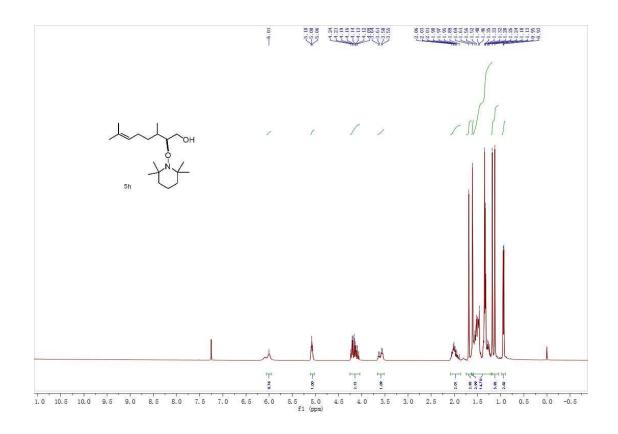



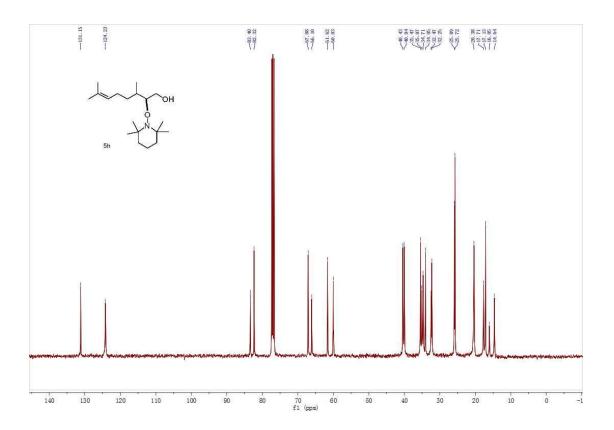



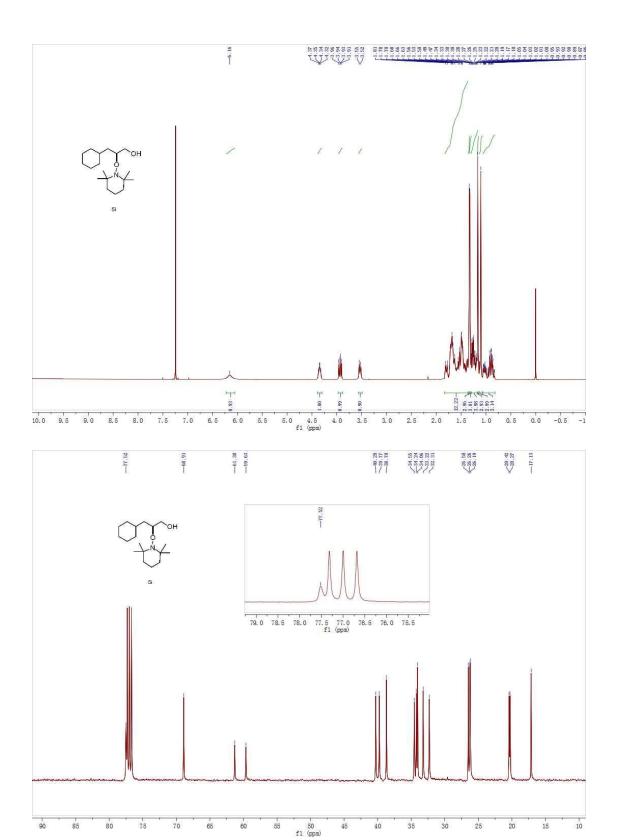



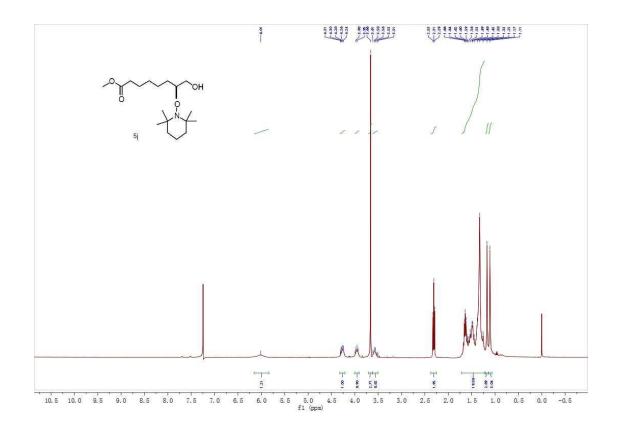



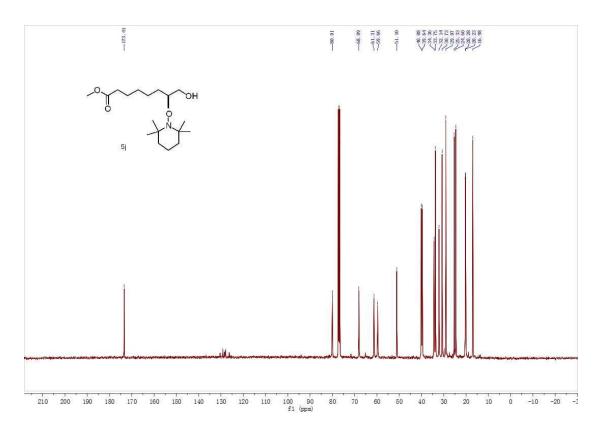



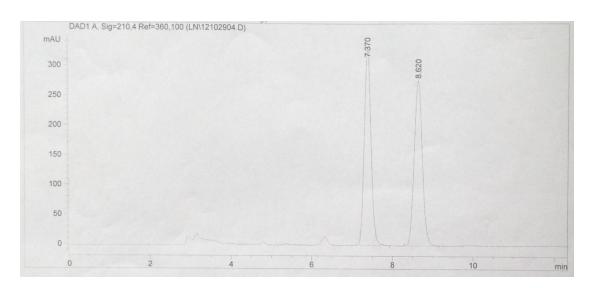



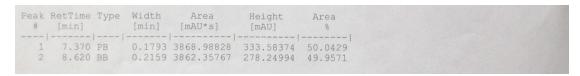



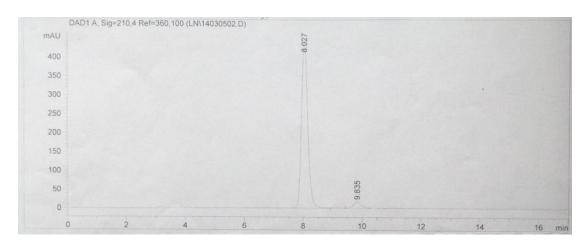







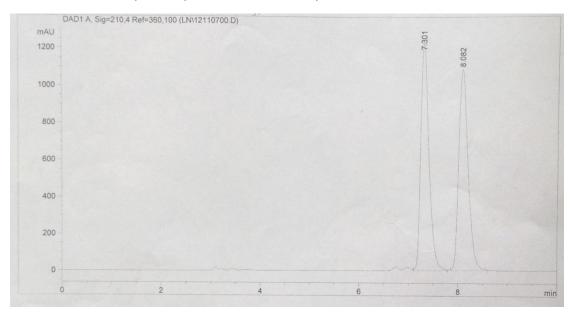




#### **HPLC** analyses

Daicel Chiralcel OD-H, 210 nm, hexane/i-PrOH = 98/2, flow rate 0.8 mL/min.

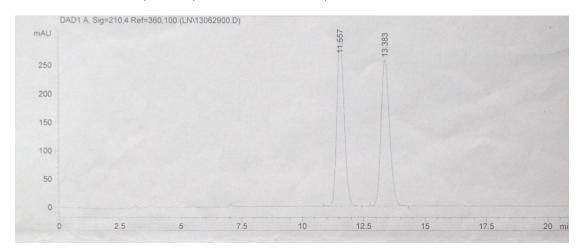




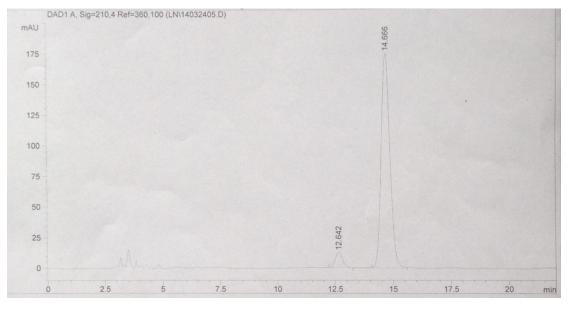





Daicel Chiralcel AY-H, 210 nm, hexane/i-PrOH = 98/2, flow rate 1.0 mL/min.





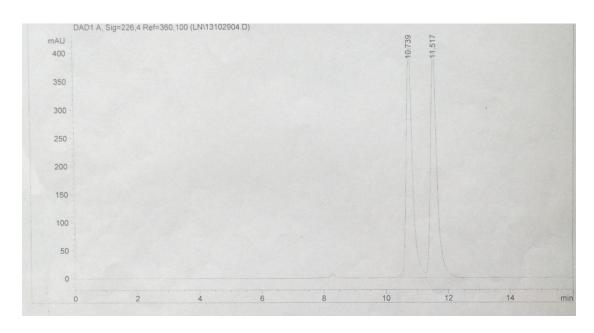





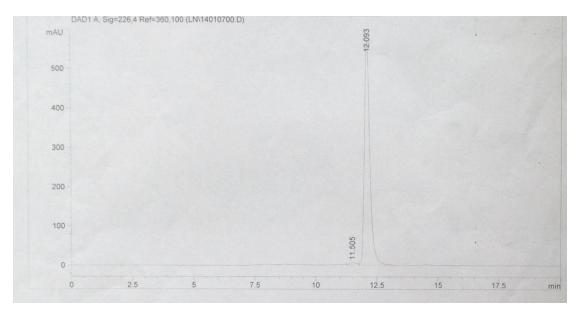

Daicel Chiralcel OD-H, 210 nm, hexane/i-PrOH = 98/2, flow rate 0.8 mL/min.



| # | and the second second |    | [min]  | Area<br>[mAU*s] |           | Area %  |
|---|-----------------------|----|--------|-----------------|-----------|---------|
|   |                       |    |        |                 |           |         |
| 1 | 11.557                | BB | 0.3267 | 6219.65479      | 296.51147 | 50.0293 |
| 2 | 13.383                | PP | 0.3755 | 6212.36182      | 257.43884 | 49.9707 |

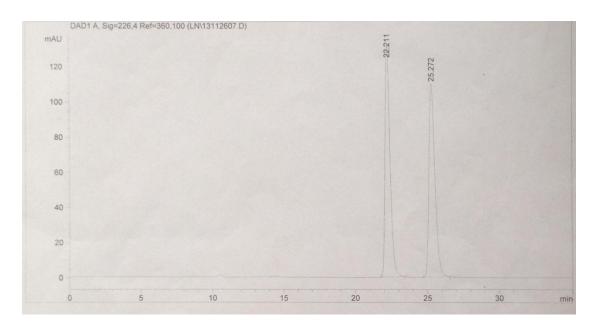



|   |        |    | Width [min] | Area<br>[mAU*s]         | Height [mAU] |        |
|---|--------|----|-------------|-------------------------|--------------|--------|
| 1 | 12.642 | ВВ | 0.3384      | 271.97598<br>4566.61035 | 12.47489     | 5.6210 |


OTMP

5d

Daicel Chiralcel AD-H, 226 nm, hexane/i-PrOH = 98/2, flow rate 0.4 mL/min.

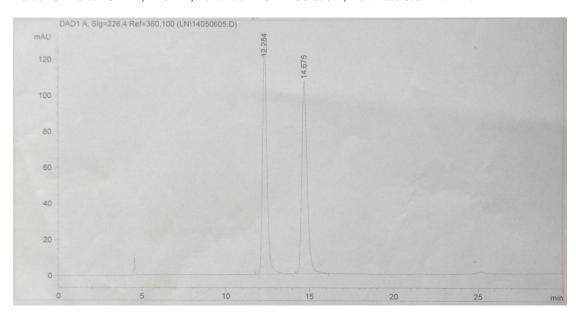




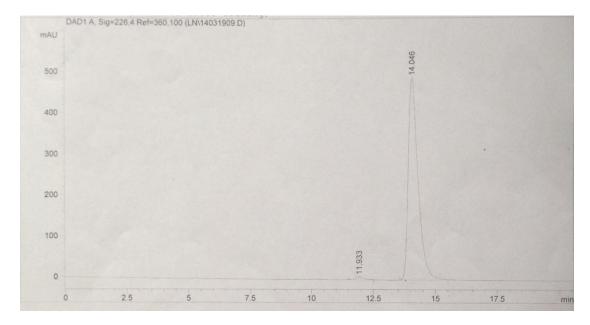




|   | RetTime [min] |    |        | Area<br>[mAU*s] | Height [mAU] | Area %  |  |  |
|---|---------------|----|--------|-----------------|--------------|---------|--|--|
|   |               |    |        |                 |              |         |  |  |
| 1 | 11.505        | VV | 0.2507 | 134.57555       | 7.82149      | 1.5031  |  |  |
| 2 | 12.093        | VB | 0.2317 | 8818.59473      | 572.51624    | 98.4969 |  |  |

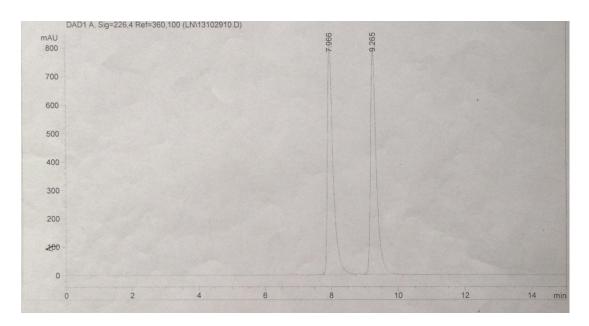

Daicel Chiralcel OD-H, 226 nm, hexane/i-PrOH = 99.9/0.1, flow rate 0.2 mL/min→0. 6 mL/min.



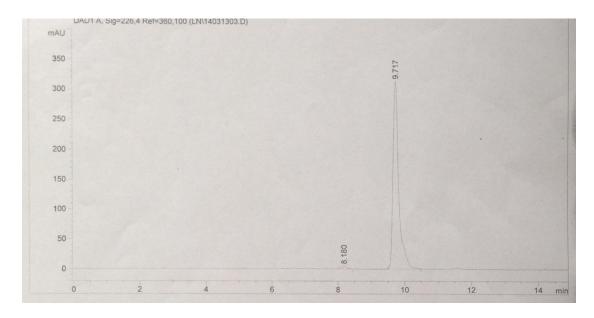

| # | [min]  |      | [min]  | Area<br>[mAU*s] |           |         |
|---|--------|------|--------|-----------------|-----------|---------|
|   |        |      |        |                 |           |         |
| 1 | 22.211 | BB . | 0.3668 | 3162.19434      | 131.38857 | 49.8694 |
| 2 | 25.272 | BB   | 0.4452 | 3178.76050      | 109.33730 | 50.1306 |



Daicel Chiralcel OD-H, 226 nm, hexane/i-PrOH = 99.9/0.1, flow rate 0.6 mL/min.

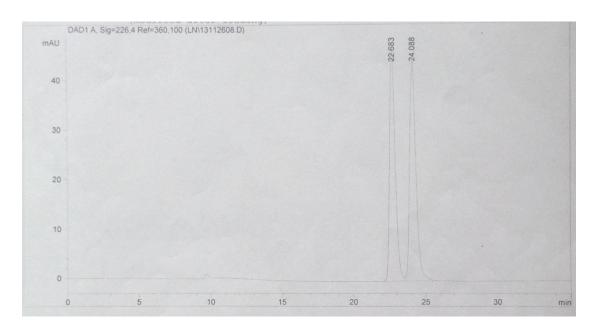



| #   | [min]  |      |        | Area<br>[mAU*s] | Height [mAU] | Area %  |
|-----|--------|------|--------|-----------------|--------------|---------|
| 1   | 12.284 | MM R | 0.2915 | 2387.53784      | 127.14625    | 49.8928 |
| ~ ~ | 14.675 | MM R | 0.3258 | 2397.80005      | 106.91164    | 50.1072 |

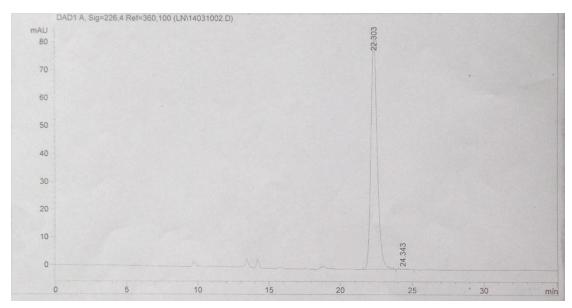



| # |        |    | [min]  | Area<br>[mAU*s]         | Height [mAU] |       |
|---|--------|----|--------|-------------------------|--------------|-------|
| 1 | 11.505 | VV | 0.2507 | 134.57555<br>8818.59473 | 7.82149      | 1.503 |

Daicel Chiralcel AD-H, 226 nm, hexane/i-PrOH = 98/2, flow rate 0.5 mL/min.

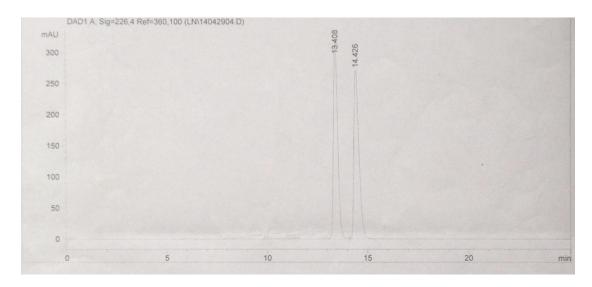



|   |       |    | Width [min] | Area<br>[mAU*s] | Height [mAU] | Area %  |
|---|-------|----|-------------|-----------------|--------------|---------|
|   |       |    |             |                 |              |         |
| 1 | 7.966 | VV | 0.1769      | 9651.91113      | 810.71979    | 50.1445 |
| 2 | 9.265 | VB | 0.1796      | 9596.26562      | 790.39343    | 49.8555 |

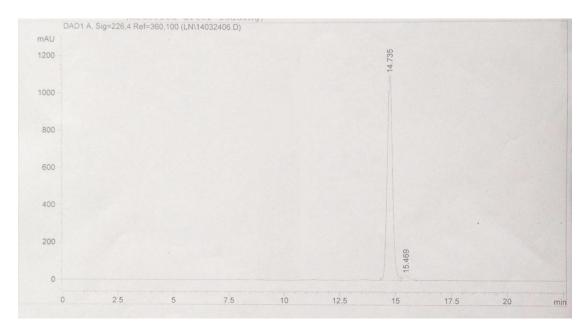



| # | A COLUMN TO SERVICE |    | [min]  | Area [mAU*s] |           |         |
|---|---------------------|----|--------|--------------|-----------|---------|
|   |                     |    |        |              |           |         |
| 1 | 8.180               | PB | 0.1389 | 41.01279     | 4.47503   | 1.0855  |
| 2 | 9.717               | BB | 0.1791 | 3737.19531   | 313.45963 | 98.9145 |

Daicel Chiralcel OD-H, 226 nm, hexane/i-PrOH = 99.9/0.1, flow rate 0.2 mL/min→0. 6 mL/min.

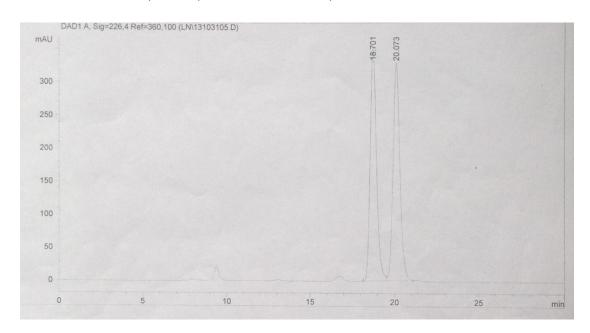



|   |        |    | Width [min] | Area<br>[mAU*s] | Height [mAU] | Area %  |
|---|--------|----|-------------|-----------------|--------------|---------|
|   |        |    |             |                 |              |         |
| 1 | 22.683 | BV | 0.4137      | 1265.21301      | 46.75899     | 48.5975 |
| 2 | 24.088 | VB | 0.4630      | 1338.23853      | 44.23165     | 51.4025 |

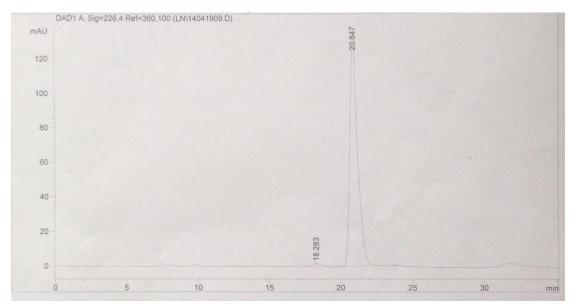



| # |        |      | [min]  | Area<br>[mAU*s] | Bearing and the second | Area %  |
|---|--------|------|--------|-----------------|------------------------|---------|
|   |        |      |        |                 |                        |         |
| 1 | 22.303 | MM R | 0.5455 | 2544.82446      | 82.93391               | 99.7347 |
| 2 | 24.343 | MM R | 0.5513 | 6.76870         | 2.04628e-1             | 0.2653  |

Daicel Chiralcel AD-H, 226 nm, hexane/i-PrOH = 99.5/0.5, flow rate 0.5 mL/min.






| # | [min]  |    | [min]  | Area<br>. [mAU*s] | Height [mAU] | 8       |
|---|--------|----|--------|-------------------|--------------|---------|
|   |        |    |        |                   |              |         |
| 1 | 14.735 | BV | 0.2564 | 1.81310e4         | 1099.65503   | 97.2323 |
| 2 | 15.469 | VB | 0.2935 | 516.08563         | 25.78436     | 2.7677  |

Daicel Chiralcel OD-H, 226 nm, hexane/i-PrOH = 99/1, flow rate 0.4 mL/min.



| # |        |    | [min]  |            | Height [mAU] | Area %  |
|---|--------|----|--------|------------|--------------|---------|
|   |        |    |        |            |              |         |
|   | 18.701 |    |        | 9197.90137 |              |         |
| 2 | 20.073 | VB | 0.4302 | 9172.66016 | 328.10822    | 49.9313 |



| # |        |      | [min]  | Area<br>[mAU*s] | Height [mAU] |         |
|---|--------|------|--------|-----------------|--------------|---------|
|   |        |      |        |                 |              |         |
| 1 | 18.283 | PB   | 0.5235 | 78.22282        | 2.05792      | 1.5473  |
| 2 | 20.847 | MM R | 0.5457 | 4977.09961      | 131.73738    | 98.4527 |

#### **Reference:**

1. K. A. Ahrendt, C. J. Borths, and D. W. C. MacMillan, *J. Am. Chem. Soc.*, 2000, **122**, 4243-4244.