Electronic Supplemental Information (ESI)

Transition metal and base free synthesis of 2-aryl-2-oxazolines from aldehydes with β-amino alcohols catalyzed by Potassium Iodide

C. Uma Maheswari,^{1*} G. Sathish Kumar² and M. Venkateshwar²

^{1.} Department of Chemistry, Center for Nanotechnology and advanced Biomaterials (CeNTAB), School of Chemical and Biotechnology, SASTRA University, Thanjavur-613401, India

² Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500607, India.

Tel.: +91 - (4362) 304346; Fax: +91-(4362)-264111.

E-mail: umamaheswaric@scbt.sastra.edu; uma.cchem@gmail.com

Table of contents

1.	General information2
2.	Experimental section2
3.	Spectroscopic data of products and Copies of ¹ H NMR, ¹³ C NMR and GC-
	MS for Products4
4.	References

General Information

All chemicals were purchased from Sigma-Aldrich and S.D Fine Chemicals, Pvt. Ltd. India and used as received. ACME silica gel (100–200 mesh) was used for column chromatography and thin-layer chromatography was performed on Merck-precoated silica gel 60- F_{254} plates. All the other chemicals and solvents were obtained from commercial sources and purified using standard methods. The ¹H spectra were recorded on a Varian-Gemini 200 MHz, Bruker-Avance 300 MHz Spectrometer. Chemical shifts (δ) are reported in ppm, using TMS (δ =0) as an internal standard in CDCl₃. GC were recorded on Shimadzu-2014 using BP-01 (30M X 0.25 mm X 1.0 µm) column. GC-MS spectra were recorded on Thermo Trace DSQ GC-MS spectrometer using BP-01 (30M X 0.25 mm X 1.0 µm) column.

Typical experimental procedure for synthesis of 2-oxazoline from aldehyde and amino alcohol: To a solution of aldehyde (1.0 mmol), potassium iodide (0.2 mmol) and amino-alcohol (1.2 mmol) in 3 mL of CH₂Cl₂, a solution of 70% aqueous TBHP (3.0 mmol) was added dropwise over a period of 30 min and stirred at room temperature. The mixture was quenched with saturated aqueous Na₂S₂O₃ after 8h, washed with brine, extracted with ethyl acetate and dried over anhydrous Na₂SO₄. Removal of the solvent under vacuum afforded the crude product, which was further purified by column chromatography using hexane / ethyl acetate mixture and was analyzed by ¹H NMR, GC and GC-MS. Similar procedure was followed for the synthesis of chiral oxazolines from chiral amino alcohols and benzaldehyde and multi-scale synthesis of chiral 2-Oxazoline **2p**.

Products 3a [1], 3c [2], 3d [3], 3h [4], 3k [5], 3m [6], 3n [7], 3p [6], 3q [8], 3r [8] and 3t [9] have been described in the literature previously. Characterization data for all compounds are given below.

5-methyl-2-p-tolyl-4,5-dihydrooxazole (3a, Table 2, Entry 1)[1]

5-methyl-2-(4-nitrophenyl)-4,5-dihydrooxazole (3b, Table 2, Entry 2)

Isolated yield = 96%; yellow solid; mp 122-124 °C. IR (KBr) cm⁻¹: 2927, $_{NO_2}^{O}$ 2877, 1726, 1647, 1597, 1525, 1343, 1111, 957, 850, 705. ¹H NMR δ (300 MHz, CDCl₃) 8.29 (d, J = 9.1 Hz, Ar, 2H), 8.12 (d, J = 8.9 Hz, Ar, 2H), 4.86 – 4.98 (m, 1H), 4.21 (dd, J = 9.4 Hz, 9.2 Hz, 1H), 3.67 (dd, J = 7.5 Hz, 7.5 Hz), 1.50 (d, J = 6.2Hz, -CH₃, 3H). ¹³C NMR (75 MHz, CDCl₃): 162.0, 133.8, 129.0, 123.4, 61.8, 31.8, 29.6, 20.9. **GC-MS** m/z 206.1 (M⁺ peak), 162.0, 117.1, 116.0, 89.0, 76.0.

---61.761

____31.821 ____29.614 20.995

-123.408

2-(4-chlorophenyl)-5-methyl-4,5-dihydrooxazole (3c, Table 2, Entry 3) [2]

Isolated yield = 86%; ¹H NMR δ(300 MHz, CDCl₃) 7.86 (d, J = 8.5 Hz, Ar, 2H), 7.37 (d, J = 8.5 Hz, Ar, 2H), 4.77 – 4.89 (m, 1H), 4.12 (dd, J = 9.4 Hz, 9.4 Hz, 1H), 3.58 (dd, J = 7.3 Hz, 7.5 Hz), 1.43 (d, J = 6.2Hz, -CH₃, 3H).

GC-MS m/z 195.0, 153.0, 150.9, 111.0, 89.0, 75.0.

5-methyl-2-phenyl-4,5-dihydrooxazole (3d, Table 2, Entry 4) [3]

Isolated yield = 83%; ¹H NMR
$$\delta(300 \text{ MHz}, \text{CDCl}_3)$$
 7.86 (d, J = 8.5 Hz, Ar,
2H), 7.54 (d, J = 8.2 Hz, 1H), 7.37 (d, J = 8.5 Hz, Ar, 2H), 4.70 – 4.85 (m,
1H), 4.05 (dd, J = 9.3 Hz, 9.3 Hz, 1H), 3.52 (dd, J = 7.4 Hz, 7.4 Hz), 1.37

(d, J =6.1Hz, -CH₃, 3H). GC-MS m/z 161.0, 117.0, 90.0, 77.0, 51.0.

5-methyl-2-(pyridin-3-yl)-4,5-dihydrooxazole (3e, Table 2, Entry 5)

Isolated yield = 61%; yellow liquid; IR (KBr) cm⁻¹: 2924, 2854, 1730, 1652, 1458, 1377, 1278, 1114, 965, 811. ¹H NMR $\delta(300 \text{ MHz}, \text{CDCl}_3) 9.1$ (s, Ar, 1H), 8.69 (s, Ar, 1H), 8.27 (d, J = 8.1 Hz, Ar, 1H), 7.32 (d, J = 8.1, Ar, 1H), 4.90 – 4.72 (m, 1H), 4.11 (dd, J = 9.4 Hz, 7.4 Hz, 1H), 3.58 (dd, J = 7.5 Hz, 9.5 Hz), 1.39 (d, J = 6.3Hz, -CH₃, 3H). ¹³ C NMR (75 MHz, CDCl₃): 151.8, 149.3, 135.6, 124.9, 123.1, 74.2, 62.0, 29.6, 21.3. GC-MS m/z 162.0, 117.9, 91.0, 78.0, 51.0.

4-methyl-2-p-tolyl-4,5-dihydrooxazole (3f, Table 2, Entry 6)

Isolated yield = 77%; yellow liquid; IR (KBr) cm⁻¹: 2956, 2923, 2855, 1724, \downarrow_{0} \downarrow_{0} $\downarrow_{1647, 1457, 1350, 1264, 1178, 1108, 1062, 1021, 972, 829, 728.$ ¹H NMR $\delta(300 \text{ MHz, CDCl}_3)$ 7.81 (d, J = 7.9 Hz,Ar, 2H), 7.20 (d, J = 7.9 Hz, Ar, 2H), 4.51 (t, J = 9.0 Hz, 8.1 Hz, 1H), 4.31- 4.43 (m, 1H), 3.94 (t, J = 7.5 Hz, 7.7 Hz, 1H), 2.42(s, -CH₃, 3H), 1.38 (d, J = 6.6 -CH₃, 3H). ¹³ C NMR (75 MHz, CDCl₃): 151.8, 149.3, 135.6, 124.9, 123.1, 74.2, 62.0, 29.6, 21.3. GC-MS m/z 175.1 (M⁺ peak), 160.0, 132.1, 105.0, 91.0, 65.0.

4-methyl-2-(4-nitrophenyl)-4,5-dihydrooxazole (3g, Table 2, Entry 7)

Isolated yield = 63%; pale yellow solid; mp 89-91 °C; IR (KBr) cm⁻¹: 2923, N_{O} 2855, 1645, 1522, 1344, 1069, 963, 856, 706. ¹H NMR δ (300 MHz, CDCl₃) 8.21 (d, J = 8.8 Hz, Ar, 2H), 8.10 (d, J = 8.1 Hz, Ar, 2H), 4.53 (t, J = 8.1 Hz, 1H), 4.31- 4.37 (m, 1H), 3.94 (t, J = 7.8 Hz, 1H), 1.42 (d, J = 6.7, -CH₃, 3H). ¹³ C NMR (75 MHz, CDCl₃): 162.6, 137.4, 129.5, 128.6, 126.3, 74.2, 62.0, 21.4. GC-MS m/z 206.0 (M⁺ peak), 190.9, 176.0, 163.0, 130.0, 117.0, 103.0, 76.0.

4-methyl-2-phenyl-4,5-dihydrooxazole (3h, table 2, Entry 8) [4]

Isolated yield = 78%; ¹H NMR $\delta(300 \text{ MHz}, \text{CDCl}_3)$ 7.90 (d, J = 7.5 Hz, Ar, 2H), 7.33 – 7.44 (m, Ar, 3H), 4.47 (t, J = 9.0 Hz, 7.5 Hz, 1H), 4.30- 4.40 (m, 1H), 3.91 (t, J = 7.5 Hz, 7.5 Hz, 1H), 1.34 (d, J = 6.8 -CH₃, 3H). **GC-MS** m/z 161.1 (M⁺ peak), 146.0, 131.0, 103.0,77.0.

2-(4-chlorophenyl)-4-methyl-4,5-dihydrooxazole (3i, Table 2, Entry 9)

Isolated yield = 65%; yellow liquid; IR (KBr) cm⁻¹: 3064, 3030, 2966, 2924, 1720, 1648, 1491, 1451, 1356, 1269, 1170, 1060, 1021, 969, 841, 701.¹H NMR $\delta(300 \text{ MHz}, \text{CDCl}_3)$ 7.81 (d, J = 8.8 Hz, Ar, 2H), 7.32 (d, J = 8.1 Hz, Ar, 2H), 4.45 (t, J = 8.1 Hz, 1H), 4.26- 4.35 (m, 1H), 3.88 (t, J = 7.3 Hz, 8.1 Hz, 1H), 2.42(s, -CH₃, 3H), 1.38 (d, $J = 6.6 \text{ -CH}_3, 3\text{H}$). ¹³C NMR (75 MHz, CDCl₃): 162.6, 137.4, 129.5, 128.6, 126.3, 74.2, 62.0, 21.4. **GC-MS** m/z 195.0 (M⁺ peak), 180.0, 125.0, 111.0, 75.0.

UMA-ASOX-125-6H #533 RT: 13.13 AV: 1 NL: 2.70E7 T: + c Full ms [40.00-600.00]

4-methyl-2-p-tolyl-4,5-dihydrooxazole (3j, Table 2, Entry 10)

Isolated yield = 83%; pale yellow solid; IR (KBr) cm⁻¹: 2928, 2846, 1719, 1598, 1466, 1380, 1253, 1175, 1102, 1023, 936, 752; ¹H NMR δ (300 MHz,CDCl₃) 7.95 (d, J = 8.1 Hz, Ar, 1H), 7.30-7.50 (m, Ar, 1H), 6.97-7.04 (m, Ar, 1H), 5.90 (t, J = 9.0 Hz, 8.1 Hz, 1H), 5.60-5.80 (m, 1H), 5.15 (t, J = 9.0 Hz, 8.1 Hz, 1H), 3.95 (s, -CH₃, 3H), 2.27 (d, J = 5.3, -CH₃, 3H). ¹³ C NMR (75 MHz, CDCl₃): 163.4, 141.4, 128.8, 128.0, 124.9, 71.8, 67.7, 28.5, 21.4. **GC-MS** m/z 190.1 (M⁺ peak), 189.0, 160.0, 118.0, 91.0, 77.0, 63.0.

85 80 75 7.0 65 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

4-ethyl-2-p-tolyl-4,5-dihydrooxazole (3k, Table 2, Entry 11)

Isolated yield = 72%; yellow liquid; IR (KBr) cm⁻¹: 2963, 2897, 1648, 1512, 1461, 1355, 1178, 1065, 963, 828, 728. ¹H NMR δ(300 MHz,

CDCl₃) 7.82 (d, J = 8.1 Hz, Ar, 2H), 7.20 (d, J = 7.9 Hz, Ar, 2H), 4.46 (t, J = 7.9 Hz, 1H), 4.17-4.43 (m, 1H), 4.02 (t, J = 7.9 Hz, 1H), 2.42 (s, -CH₃, 3H), 1.57 – 1.82 (m, 2H), 1.3 (t, J = 7.4 Hz, 7.4 Hz, 3H). ¹³ C NMR (75 MHz, CDCl₃): 157.4, 137.1, 134.1, 131.7, 130.2, 120.6, 111.8, 56.1, 11.6.**GC-MS** m/z 189.1 (M⁺ peak), 160.0, 105.1, 91.0, 65.0 .

4-ethyl-2-(4-nitrophenyl)-4,5-dihydrooxazole (31,Table 2, Entry 12) [6]

(m, 1H), 4.10 (t, J = 7.9 Hz, 1H), 1.61 – 1.86 (m, 2H), 1.06 (d, J = 7.4 Hz, 3H). **GC-MS** m/z 220 (M⁺ peak), 191.0, 163.0, 146.0, 117.0, 90.0, 76.0.

2-(4-chlorophenyl)-4-ethyl-4,5-dihydrooxazole (3m, Table 2, Entry 13) [7]

Isolated yield =83%; ¹H NMR δ (300 MHz, CDCl₃) 7.80 (d, J = 8.6 Hz, Ar, 2H), 7.32 (d, J = 8.6 Hz, Ar, 2H), 4.46 (t, J = 8.1 Hz, 1H), 4.21-4.30

(m, 1H), 3.96 (t, J = 7.9 Hz, 1H), 1.72 – 1.80 (m, 2H), 1.04 (d, J = 7.7 Hz, 7.6 Hz, 3H). **GC-MS** m/z 209.1 (M⁺ peak), 182.0,179.9, 125.0, 111.0, 75.0.

4-ethyl-2-phenyl-4,5-dihydrooxazole (3n, Table 2, Entry 14) [5]

 $\begin{array}{c} & \quad \mbox{Isolated yield} = 84\%; \ ^1\mbox{H NMR } \delta(300\ \mbox{MHz},\ \mbox{CDCl}_3)\ 7.82\ \mbox{(d, J} = 8.1\ \mbox{Hz}, \\ Ar,\ 2H),\ 7.32\ \mbox{(d, J} = 7.9\ \mbox{Hz},\ 1H),\ 7.20\ \mbox{(d, J} = 7.9\ \mbox{Hz},\ Ar,\ 2H),\ 4.50\ \mbox{(t, J} = 7.9\ \mbox{Hz},\ 1H),\ 4.27-\ 4.48\ \mbox{(m, 1H)},\ 4.03\ \mbox{(t, J} = 7.9\ \mbox{Hz},\ 1H),\ 1.62\ \mbox{-}\ 1.91\ \mbox{(m, 2H)},\ 1.0\ \mbox{(t, J} = 7.4\ \mbox{Hz},\ 3H). \ \mbox{GC-MS m/z}\ \ 175.0\ \mbox{(M}^+\ \mbox{peak}\ \),\ 146.0,\ 118.0,\ 91.0,\ 77.0. \end{array}$

4-ethyl-2-(pyridin-3-yl)-4,5-dihydrooxazole (30, Table 2, Entry15)

(S)-4-isopropyl-2-phenyl-4,5-dihydrooxazole (3p, Table 3, Entry 1) [6]

Isolated yield = 81%; ¹H NMR $\delta(300 \text{ MHz}, \text{CDCl}_3)$ 7.91 (d, J = 8.1 Hz, Ar, $\downarrow \downarrow \downarrow \uparrow_0^{\text{Ph}}$ 2H), 7.34-7.44 (m, Ar, 3H), 4.34-4.41 (m, -CH, 1H), 4.04- 4.12 (m, -CH₂, 2H), 1.79-1.88 (m, -CH, 1H), 1.02 (d, J = 7.3 Hz, -CH₃, 3H), 0.93 (d, J = 7.3 Hz, -CH₃, 3H). **GC-MS** m/z 189.1, 146.0, 118.0, 91.0, 77.0, 51.0. Optical rotation: $[\alpha]_D^{22} = -76.4$, (c =0.63 in CHCl₃) {Lit.⁵ $[\alpha]_D^{22}$ -83 (c = 0.63, CHCl₃)}

(S)-4-isobutyl-2-phenyl-4,5-dihydrooxazole (3q, Table 3, Entry 2) [8]

Isolated yield = 86%; ¹H NMR $\delta(300 \text{ MHz}, \text{CDCl}_3)$ 7.89 (d, J = 8.3 Hz, Ar, 2H), 7.33- 7.45 (m, Ar, 3H), 4.47 (t, J = 9.8Hz, 7.5 Hz, 1H), 4.25- 4.36 (m, H), 3.95 (t, 7.5 Hz, 1H), 1.78 - 1.91 (m, 1H), 1.64 - 1.74 (m, 1H), 1.31 - 1.40 (m, 1H), 0.97 - 1.00 (m, -(CH_3)_2, 6H). **GC-MS** m/z 204.1 (M+1), 174.0, 145.1, 132.1, 131.0, 91.0, 77.0. Optical rotation: $[\alpha] = -66.1$, c =1.0 in CHCl₃). {Lit.⁷ $[\alpha]_D^{21} = -76.9$ (c =1, CHCl₃)}

(R)-4-isobutyl-2-phenyl-4,5-dihydrooxazole (3r, Table 3, Entry 3) [8]

 $\bigvee_{O} \bigvee_{O} \bigvee_{O$

(R)-5-methyl-2-phenyl-4,5-dihydrooxazole (3s, Table 3, Entry 4) [9]

Optical rotation: $[\alpha] = -4.5$, c =1.0 in MeOH). {Lit. [9] $[\alpha]_D^{25} = -5.1$ (c = 1.0, MeOH)}

(S)-4-methyl-2-phenyl-4,5-dihydrooxazole (3t, Table 3, Entry 5) [9]

Optical rotation: $[\alpha] = -74.2$, c =1.0 in EtOH). {Lit.[9] $[\alpha]_D^{25} = -79.8$ (c = 1.0, $(\alpha)_D^{N-Ph}$ EtOH)}

References:

- 1. Salomon, Chem. Ber, 1893, 26, 1322.
- 2. Semenov, V. P., J. Org. Chem. USSR, (English ed.), 1977, 13, 2056.
- 3. Chamchaang, W.; Pinhas, A. R. J. Org. Chem. 1990, 55, 2943-2950.
- Alvernhe, G. M.; Ennakoua, C. M.; Lacombe, S. M.; Laurent, A. J. J. Org. Chem. 1981, 24, 4938.
- Byrne, C. M.; Church, T. L.; Kramer, J. W.; Coates, G. W. Angew. Chem. Int. Ed. 2008, 47, 3979 – 3983.
- 6. Schwekendiek, K.; Glorius, F. Synthesis, 2006, 2996.
- 7. Cwik, A.; Hell, Z.; Hegedus, A.; Finta, Z.; Horvath, Z. Tetrahedron Lett. 2002, 43, 3985.
- 8. Fukuhara, T.; Hasegawa, C.; Hara, S. Synthesis, 2007, 1528.
- Dehmlow, E. V.; Pieper, St.; Neumann, B.; Stammler, H.-G. Liebigs Ann. Chem. 1997, 1013.