Supporting Information:

Novel CuClSe₂ microribbons: microwave-assisted synthesis, phase transformation and their photo-response properties

Yong-Qiang Liu,^{ab} Hao-Di Wu^{ab}, Yu Zhao^a, Ge-Bo Pan*^a

^a Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences;

^b Also at University of Chinese Academy of Sciences.

Figure S1. Energy dispersive X-ray spectrum of CuClSe₂ microribbons.

Figure S2. EDS mapping analysis of an individual CuClSe₂ microribbon.

Figure S3. (a) TGA measurement with a heating rate of 10° C/min in N₂. (b-c) XRD patterns of the as-prepared MRs after treatment at selected temperatures in N₂ and air.

Figure S4. Time-resolved photoresponse curves at a bias of 10 V and an incident light density of 1.8 and 14.4 mW/cm².

Fig S5. Experimental setup for the photoresponse characteristics: (a) SUSS PM8 probe station; (b) light source; (c) Keithley 4200-SCS.

Fig S6. Structural and morphological characterization of copper bromine selenide microribbons: (a) SEM image; (b) TEM image; (c) HR-TEM image; (d) FFT image.