# **Supporting Information**

## **Tough Strained Fibers of Polyelectrolyte Complex: Pretensioned Polymers**

Qifeng Wang, and Joseph B. Schlenoff\*

### **Strain Release**

Samples of extruded PEC, exPEC, were relaxed in solutions of salt at room temperature or salt-free hot water. Fig. S1 shows the final length attained by samples. All lengths are normalized to the starting length (3 to 4 cm).



**Fig. S1** Final length ( $l_f$ ) of exPEC samples in (a) NaCl: (b) and hot water. These points are the averages of the last 3 measurements in relaxation curves shown in Fig. 2a and 2b.

#### **Fitting Constants for Strain Release**

When the temperature is lower than the  $T_g$  of the exPEC ([NaCl]  $\leq 0.75$  M and  $T \leq 30$  °C), an additional process of rate constant ( $k_2$ ) is needed for reasonable fits. The equation has two exponential decays:

$$l_{\rm t} = l_{\rm f} + A_1 e^{-k_1(t-t_{\rm h})} + A_2 e^{-k_2(t-t_{\rm h})}$$
(S1)

where  $k_1$  and  $k_2$  are the rate constants.  $A_1$  and  $A_2$  are contributions from the two relaxation processes (i.e. the weights of the two exponential decays).  $l_f + A_1 + A_2 = 1$ . The linear fits for  $k_1$  are:

 $lnk = -8.38 + 0.90 [NaCl]^{6/5} (r^2 = 0.971)$ for the salt samples  $lnk = 15.7 - 6940 (1/T) (r^2 = 0.981)$ for the hot water samples.

These fits were used to plot the equivalence of [NaCl] and temperature in Fig. 5b.

The parameters for fitting are given in Tables S1 and S2 below.

**Table S1.** Fitting parameters for relaxation in NaCl solutions.

| NaCl | Temp | l <sub>f</sub> | t <sub>h</sub> | (1- <i>I</i> <sub>f</sub> ) | <i>k</i> <sub>1</sub> | $A_2^{(b)}$ | <i>k</i> <sub>2</sub> | r <sup>2</sup> |
|------|------|----------------|----------------|-----------------------------|-----------------------|-------------|-----------------------|----------------|
| [M]  | [°C] |                |                | or $A_1^{a}$                | ×10 <sup>-4</sup>     |             | ×10 <sup>-6</sup>     |                |
| 0    | 23   | 0.528          | 713            | 0.165                       | 3.00                  | 0.306       | 5.64                  | 0.992          |
| 0.15 | 23   | 0.428          | 965            | 0.239                       | 2.26                  | 0.333       | 6.13                  | 0.993          |
| 0.3  | 23   | 0.368          | 907            | 0.358                       | 2.79                  | 0.274       | 10.9                  | 0.994          |
| 0.45 | 23   | 0.355          | 764            | 0.440                       | 3.07                  | 0.205       | 19.8                  | 0.995          |
| 0.6  | 23   | 0.355          | 1234           | 0.455                       | 3.75                  | 0.190       | 41.0                  | 0.997          |
| 0.75 | 23   | 0.350          | 1217           | 0.507                       | 4.66                  | 0.143       | 61.5                  | 0.997          |
| 0.9  | 23   | 0.350          | 1576           | 0.650                       | 4.71                  |             |                       | 0.989          |
| 1.05 | 23   | 0.342          | 1063           | 0.658                       | 4.88                  |             |                       | 0.989          |
| 1.2  | 23   | 0.346          | 1344           | 0.654                       | 6.89                  |             |                       | 0.988          |
| 1.35 | 23   | 0.346          | 1180           | 0.654                       | 8.94                  |             |                       | 0.997          |
| 1.5  | 23   | 0.365          | 1220           | 0.635                       | 9.61                  |             |                       | 0.994          |
| 1.65 | 23   | 0.371          | 1070           | 0.629                       | 12.1                  |             |                       | 0.994          |
| 1.8  | 23   | 0.363          | 1001           | 0.637                       | 14.1                  |             |                       | 0.995          |
| 2    | 23   | 0.364          | 958            | 0.636                       | 20.5                  |             |                       | 0.999          |

<sup>a)</sup> $1 - l_f = A_1 + A_2$  for two processes of rate constant and  $1 - l_f = A_1$  for one process of rate constant.

**Table S2.** Fitting parameters for relaxation in water.

| NaCl | Temp | l <sub>f</sub> | <i>t</i> h | (1- <i>I</i> <sub>f</sub> ) | $k_1$             | $A_2^{(b)}$ | $k_2$             | r²    |
|------|------|----------------|------------|-----------------------------|-------------------|-------------|-------------------|-------|
| [M]  | [°C] |                |            | or $A_1^{a}$                | ×10 <sup>-4</sup> |             | ×10 <sup>-6</sup> |       |
| 0    | 23   | 0.528          | 713        | 0.165                       | 3.00              | 0.306       | 5.64              | 0.992 |
| 0    | 30   | 0.371          | 384        | 0.418                       | 8.09              | 0.211       | 51.7              | 0.990 |
| 0    | 40   | 0.348          | 254        | 0.652                       | 18.0              |             |                   | 0.981 |
| 0    | 50   | 0.284          | 131        | 0.716                       | 37.6              |             |                   | 0.985 |
| 0    | 60   | 0.223          | 74         | 0.777                       | 65.7              |             |                   | 0.991 |
| 0    | 70   | 0.207          | 46         | 0.793                       | 106               |             |                   | 0.986 |
| 0    | 77   | 0.201          | 32         | 0.799                       | 151               |             |                   | 0.991 |
| 0    | 88   | 0.188          | 14         | 0.812                       | 239               |             |                   | 0.996 |

<sup>a)</sup> $1 - l_f = A_1 + A_2$  for two processes of rate constant and  $1 - l_f = A_1$  for one process of rate constant.

## Swelling

The hydration time was interpreted to be the time taken before the samples started relaxing (seen in Fig. 2 as a short induction period before relaxation starts). Hydration times for individual samples were obtained from the fits, and are shown in Fig. S2



**Fig. S2** Hydration time ( $t_h$ ) for different [NaCl] ( $\blacksquare$ ); and different temperatures of water ( $\bullet$ ).  $t_h$  does not change much with [NaCl] but decreases with increasing temperature. Hydration times used in fitting are also given in Tables S1 and S2.

#### **Mechanical Test of Removed Rivets**

The exPEC "rivets" were excised, by cutting one of the caps off, from the sample shown (holding the two aluminum bars together) in Figure 6. The toughness of fastened exPEC rivets was measured by strain-to-break experiments (Figure S3). The rivets break at a strain of about 20% with a mean toughness of  $5.5 \pm 0.8$  MJ m<sup>-3</sup>.



**Fig. S3**. Photograph of two exPEC rivets removed from the fastened aluminum bars in Fig. 6 of the main paper (a) and strain-to-break test for all four excised rivets (b). Scale bar in **a** is 1 cm.

## References

- [1] J. B. Schlenoff, A. H. Rmaile, C. B. Bucur, J. Am. Chem. Soc. 2008, 130, 13589.
- [2] R. F. Shamoun, A. Reisch, J. B. Schlenoff, Adv. Funct. Mater. 2012, 22, 1923.