Electronic Supplementary Information

Integration process of CO_{2} capture and in situ hydrogenation to formate with tunable ethoxyl-functionalized amidine and $\mathbf{R h} /$ bisphosphine system \dagger

Yu-Nong Li, Liang-Nian He,* Xian-Dong Lang, Xiao-Fang Liu and Shuai Zhang State Key Laboratory and Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and

Engineering (Tianjin), Nankai University, Tianjin, 300071,

People's Republic of China

* Corresponding author: Tel: +86-22-23503878; Fax: +86-22-23503878; E-mail: heln@ nankai.edu.cn

Table of Contents

1. General experimental methods 2
2. Table S1 and Figures S1-S10 7
3. The Characterization data for the absorption mixture 13
4. ${ }^{1} H$ NMR and ${ }^{13}$ C NMR Charts for the absorption mixture 15
5. IR spectra for absorbents and absorption mixture 30
6. ESI-MS for amidine derivatives 36
7. References 37

1. General experimental methods

Materials

Metal salts and ligands were obtained commercially from J\&K Chemical and Aladdin without further purification. The solvents of chromatographically purity were obtained commercially and distilled prior to use. The absorbent materials were synthesized according to the references. ${ }^{1-7}$

Instruments

${ }^{1} \mathrm{H}$ NMR spectra was recorded at Bruker 400 or Varian Mercury-Plus 400 spectrometer in $\mathrm{CDCl}_{3}, \mathrm{D}_{2} \mathrm{O}$ or d_{6}-DMSO and TMS (0 ppm) was used as internal reference. ${ }^{13} \mathrm{C}$ NMR was recorded at 100.6 MHz in CDCl_{3} or $\mathrm{D}_{2} \mathrm{O}$ and $\mathrm{CDCl}_{3}(77.0$ ppm) was used as internal reference. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) chemical shifts were measured relative to an external orthophosphoric acid standard. Infrared (IR) spectra were recorded on a Bruker Tensor 27 FT-IR spectropho-tometer with KBr pellets. In situ FTIR was collected on a Mettler Toledo React IR ic10, inner silicon probe, using ic IR analysis system. The probe is placed at the bottom of the autoclave, which is constantly stirred by mechanical stirring, and the spectra are collected in situ during the whole process. ESI-MS were recorded on a Thermo Finnigan LCQ Advantage spectrometer in ESI mode with a spray voltage of 4.8 kV . GC analyses were performed on Shimadzu GC-2014, equipped with a capillary column (RTX-17, $30 \mathrm{~m} \times 0.25 \mu \mathrm{~m}$) using a flame ionization detector. GC-MS analyses were performed on SHIMADZU GCMS-QP2010 SE and GC equipped with a capillary column (Rxi-5MS, $30 \mathrm{~m} \times 0.25 \mu \mathrm{~m}$). TGA was performed on a PTC-10A TG-DTA analyzer (Japan, Rigaku) under air flow from room temperature to $700{ }^{\circ} \mathrm{C}$ with a heating rate of $10{ }^{\circ} \mathrm{C} / \mathrm{min}$. Elementary analysis was performed on vario ELCUBE analyzer. The scanning electron micros copy (SEM) images were taken with a JEOLJSM-6700F field emission scanning electron microscope (15 kV). The surface area was calculated using a multipoint Brunauer eEmmett e Teller (BET) model. The total pore volume was estimated at a relative pressure of 0.99 , assuming full surface saturation with
nitrogen.
All of the theoretical calculations here were carried out using the GAUSSIAN 09 packages. The geometries were completely optimized by the B3LYP method in conjunction with $6-31+G(d)$ basis set. All the final structures were confirmed by frequency calculation to be the real minima without any imaginary frequency using the same level of theory. The solvent effect using the Conductor-like Polarizable Continuum Model (CPCM) in each case was carried out at the M06-2X/6-311++G(d,p) level. Solute-solvent interactions can have dramatic effects on molecular energies, structures, and properties, and ethanol was chosen as solvent environment. All the bond lengths are in angstroms (\AA). Structures were generated using GaussView 5.0.

Synthesis of amidine derivatives

Synthesis of 1,2-bis(2-bromoethoxy)ethane ($\mathrm{BrPEG}_{150} \mathrm{Br}$)

To a stirred mixture of triethylene glycol (PEG_{150}) (0.13 mol) and pyridine (0.51 mol) at $0{ }^{\circ} \mathrm{C}$, phosphorus tribromide (0.103 mol , distilled) was added dropwise over 30 min . The resulting suspension was heated at $60{ }^{\circ} \mathrm{C}$ for 4 h , and then the mixture was poured into ice-water (30 mL). The lower organic layer was washed with water $(5 \times 20 \mathrm{~mL})$, and then it was dried with MgSO_{4}. Finally, the target compound $\mathrm{BrPEG}_{150} \mathrm{Br}$ was purified through distillation under reduced pressure as a light yellow liquid. ${ }^{1}$

Synthesis of $\mathrm{PEG}_{150} \mathrm{MeCl}$

A solution of thionyl chloride $(0.45 \mathrm{~mol})$ in $\mathrm{CHCl}_{3}(90 \mathrm{~mL})$ was added slowly over 60 \min to a stirred solution of triethylene glycol monomethyl ether (0.3 mol) and pyridine (0.3 mol) in $\mathrm{CHCl}_{3}(200 \mathrm{~mL})$, followed by refluxing the above reaction mixture at $100{ }^{\circ} \mathrm{C}$ for 4 h , and then a yellow liquid mixture is obtained, which was
washed with water $(4 \times 125 \mathrm{~mL})$, dried with MgSO_{4}, and concentrated under reduced pressure at $60^{\circ} \mathrm{C}$ to remove CHCl_{3}. The crude product was purified under reduced pressure to give $\mathrm{PEG}_{150} \mathrm{MeCl}$ as a light yellow liquid. ${ }^{2}$

Synthesis of ionic liquids $D B U_{2} P E G G_{150} \mathrm{Br}_{2}$

Under $\mathrm{N}_{2}, \mathrm{DBU}(20 \mathrm{mmol})$ and $\mathrm{BrPEG}_{150} \mathrm{Br}(34.4 \mathrm{mmol})$ were added to dry toluene $(2 \mathrm{~mL})$ in a round-bottomed flask. The mixture was heated under reflux under N_{2} for 24 h , upon which two layers had formed. The flask was allowed to cool to room temperature and was then cooled to $-10{ }^{\circ} \mathrm{C}$ overnight, during which time white solid or yellow oil were formed. The excess toluene was decanted, while N_{2} was being passed over the product layer. The resulting product was washed with dry $\mathrm{Et}_{2} \mathrm{O}$ and then dried in vacuo for 24 h to obtain $\mathrm{DBU}_{2} \mathrm{PEG}_{150} \mathrm{Br}_{2}$ as brown oil. ${ }^{1}$

Synthesis of DBUOH

The reaction was carried out on a scale of 10 g under Ar atmosphere. DBU (1.0 equiv.) was added to the dry THF (50 mL) and it was cooled to $-78{ }^{\circ} \mathrm{C}$ by liquid nitrogen-acetone bath. n - BuLi (1.6 M in hexane) (1.05 equiv.) was added dropwise into the solution at $-78^{\circ} \mathrm{C}$ for 20 min . After stirring for 2 h at $-78^{\circ} \mathrm{C}$ and for 1 h at $-20^{\circ} \mathrm{C}$, a solution of propylene oxide (0.5 equiv.) in THF was added dropwise for 20 \min at $-10^{\circ} \mathrm{C}$. After stirring for 1 h at $-10^{\circ} \mathrm{C}$, the solution was warmed up to room temperature slowly. The mixture was stirred for 2 h and hydrolyzed by deionized water (1.05 equiv.) for 30 min . The mixture was filtered and evaporated. DBUOH was obtained by fractional vacuum distillation. ${ }^{3}$

Synthesis of DBUPEG ${ }_{150} M e$

The reaction was carried out under Ar atmosphere. DBU ($45 \mathrm{mmol}, 6.84 \mathrm{~g}$) was added to the dry THF (50 mL) and it was cooled to $-78^{\circ} \mathrm{C}$ by liquid nitrogen-acetone bath. $\mathrm{n}-\mathrm{BuLi}$ (1.6 M in hexane) ($47.3 \mathrm{mmol}, 30 \mathrm{~mL}$) was added dropwise into the solution at $-78{ }^{\circ} \mathrm{C}$ for 20 min . After stirring for 2 h at $-78^{\circ} \mathrm{C}$ and for 1 h at $-20^{\circ} \mathrm{C}$, a solution of $\mathrm{PEG}_{150} \mathrm{MeCl}(45 \mathrm{mmol}, 8.22 \mathrm{~g})$ in THF was added dropwise for 20 min at $-10{ }^{\circ} \mathrm{C}$. After stirring for 1 h at $-10{ }^{\circ} \mathrm{C}$, the solution was warmed up to room temperature slowly. The mixture was stirred for 2 h and hydrolyzed by deionized water for 30 min . The mixture was filtered and evaporated. $\mathrm{DBUPEG}_{150} \mathrm{Me}$ was obtained by column chromatography. ${ }^{4}$

Synthesis of TMGPEG ${ }_{150} M e$

In a dry flask under N_{2} atmosphere, 1,1,3,3-tetramethylguanidine ($20 \mathrm{mmol}, 2.30 \mathrm{~g}$) and xylene $(0.3 \mathrm{~mL})$ were mixed together, and the system was heated up to $120^{\circ} \mathrm{C}$ and maintained at this temperature for 2 h , and then $\mathrm{PEG}_{150} \mathrm{MeCl}(10 \mathrm{mmol}, 1.83 \mathrm{~g})$ was added dropwise over 2 h . After being stirred at $120{ }^{\circ} \mathrm{C}$ for 7 h under N_{2} atmosphere, the resulting mixture was allowed to cool down to room temperature. The formed salt precipitates 1,1,3,3-tetramethylguanidine• HCl was filtrated out. The filtrate liquid was distilled under reduced pressure and $\mathrm{TMGPEG}_{150} \mathrm{Me}$ was thus obtained. ${ }^{5}$

Synthesis of DBUOH@Silica

In a typical surface modification process, activated HG/T2354-92 H silica ($8 \mathrm{~g}, 150$ ${ }^{\circ} \mathrm{C}$, under vacuum) was first treated with a refluxing anhydrous toluene solution (50 mL) of 3-glycidoxypropyltrimethoxysilane ($25 \mathrm{mmol}, 6 \mathrm{~g}$). The solution was refluxed for 24 h at $120{ }^{\circ} \mathrm{C}$ under an inert N_{2} atmosphere. The solution was filtered and the solid was washed subsequently with toluene, dichloromethane, and methanol, and dried under reduced pressure at $80{ }^{\circ} \mathrm{C}$ for 10 h to obtain epoxide@Silica as white powder, which was analyzed by IR spectroscopy. ${ }^{6}$

Then, the reaction was carried out under Ar atmosphere. DBU ($30 \mathrm{mmol}, 4.56 \mathrm{~g}$) was added to the dry THF (50 mL) and it was cooled to $-78{ }^{\circ} \mathrm{C}$ by liquid nitrogen-acetone bath. n-BuLi (1.6 M in hexane) ($40 \mathrm{mmol}, 25 \mathrm{~mL}$) was added dropwise into the solution at $-78^{\circ} \mathrm{C}$ for 20 min . After stirring for 2 h at $-78^{\circ} \mathrm{C}$ and for 1 h at $-20^{\circ} \mathrm{C}$, epoxide@Silica (13 g) was added in batches under inert atmosphere. Then, after stirring for 1 h at $-10^{\circ} \mathrm{C}$, the solution was warmed up to room temperature slowly. The mixture was stirred overnight and hydrolyzed by methanol for 30 min . The mixture was filtered and evaporated to give the $\mathrm{DBUOH} @$ Silica as white powder, which was analyzed by IR spectroscopy and CHN elemental analysis. ${ }^{3}$

Synthesis of DBU@PS

The reaction was carried out under Ar atmosphere. DBU ($30 \mathrm{mmol}, 4.56 \mathrm{~g}$) was added to the dry THF (50 mL) and it was cooled to $-78{ }^{\circ} \mathrm{C}$ by liquid nitrogen-acetone bath. $\mathrm{n}-\mathrm{BuLi}$ (1.6 M in hexane) ($32 \mathrm{mmol}, 20 \mathrm{~mL}$) was added dropwise into the solution at $-78{ }^{\circ} \mathrm{C}$ for 20 min . After stirring for 2 h at $-78^{\circ} \mathrm{C}$ and for 1 h at $-20^{\circ} \mathrm{C}$,
activated chloromethylated polystyrene resin $(18-19 \% \mathrm{Cl})$ was added to the solution under Ar atmosphere. Then, after stirring for 1 h at $-10^{\circ} \mathrm{C}$, the solution was warmed up to room temperature slowly. The mixture was stirred overnight and hydrolyzed by methanol for 30 min . The mixture was filtered and evaporated to give the DBU@PS, which was analyzed by IR spectroscopy. ${ }^{7}$

2. Table S1 and Figures S1-S10

Table S1 Parameters of solid amidine derivatives. ${ }^{a}$

Amidine derivative	Surface area $\left(\mathrm{S}_{\mathrm{BET}}\right)\left(\mathrm{m}^{2} \mathrm{~g}^{-1}\right)$	$\mathrm{V}_{\text {total }}\left(\mathrm{cm}^{3} \cdot \mathrm{~g}^{-1}\right)^{a}$	Base loading $(\mathrm{wt} \%)^{b}$
DBU@PS	27.3	0.09	20.0%
DBUOH@Silica	98.5	0.07	11.3%
${ }^{a}$ Total volume calculated at P/P ${ }_{0}=0.99 .{ }^{b}$ Measured by Elemental Analysis.			

Figure $\mathrm{S} 1 \mathrm{CO}_{2}$ capture/activation by alkanolamidine with enthalpy changes. (Calculated by M06-2X/6-311++G(d,p)//B3LYP/6-31+G(d)/CPCM method in ethanol.) A: DBUOH; B: $\mathrm{DBUH}^{+} \mathrm{OCO}_{2}$; $\mathbf{C}: \mathrm{DBUH}^{+} \mathrm{OCO}_{2}{ }^{-}$with intramolecular hydrogen bond. H : white, C : gray, N : blue, O: red. N-H bond $(1.10 \AA$) and O-H bond $(1.46 \AA)$ in the cyclic capture product \mathbf{C}.

Figure S 2 Temperature and time effect under $\mathrm{CO}_{2}(4 \mathrm{MPa})$ and $\mathrm{H}_{2}(4 \mathrm{MPa})$ pressure. Reaction conditions: (a) $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ ($0.01 \mathrm{mmol}, 2.6 \mathrm{mg}$), DPEphos ($0.01 \mathrm{mmol}, 27 \mathrm{mg}$), DBU (3.3 mmol), methanol (3 mL), 16 h . (b) $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.005 \mathrm{mmol}, 1.3 \mathrm{mg}$), DPEphos (0.025 mmol , 13.5 mg), $\mathrm{DBU}(6.6 \mathrm{mmol})$, methanol (3 mL), $60^{\circ} \mathrm{C}$.

Figure S3 FT-IR spectra of the recovered DBUOH@Silica (a) and recovered DBUOH@Silica + CO_{2} (b).

Figure S4 TGA of DBUOH@Silica. $\mathrm{N}_{2}, 10{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$, temperature range: $0-700{ }^{\circ} \mathrm{C}$. The weight loss did not appear until heating to $189{ }^{\circ} \mathrm{C}$.

Figure S 5 Reversible CO_{2} absorption and desorption (a) and three consecutive cycles (b, c) by DBUOH@Silica with amidine content of 11.3% at $25^{\circ} \mathrm{C}$.

Figure $\mathrm{S} 6{ }^{1} \mathrm{H}\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}) and ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, DMSO-d ${ }_{6}$) spectra of DBUOH@Silica.

Figure $\mathrm{S} 7{ }^{1} \mathrm{H}$ NMR spectrum for reaction mixture of CO_{2} gas hydrogenation. Conditions: $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.005 \mathrm{mmol}, 1.3 \mathrm{mg})$, DPEphos $(0.025 \mathrm{mmol}, 13.5 \mathrm{mg})$, DBUOH ($3 \mathrm{mmol}, 0.64 \mathrm{~g}$), methanol (3 mL), $\mathrm{H}_{2}(4 \mathrm{MPa}), \mathrm{CO}_{2}(4 \mathrm{MPa}), 6{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}$.

Figure $\mathrm{S} 8{ }^{1} \mathrm{H}$ NMR spectrum for reaction mixture of captured CO_{2} hydrogenation. $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ ($0.005 \mathrm{mmol}, 1.3 \mathrm{mg}$), DPEphos ($0.05 \mathrm{mmol}, 13 \mathrm{mg}$), $\mathrm{DBUOH}+\mathrm{CO}_{2}$ in tetraethylene glycol dimethyl ether ($3 \mathrm{mmol}: 2.85 \mathrm{mmol}: 5 \mathrm{mmol}$), methanol (3 mL), $\mathrm{H}_{2}(4 \mathrm{MPa}), 60^{\circ} \mathrm{C}, 16 \mathrm{~h}$.

Figure $\mathrm{S} 9 \mathrm{CG}-\mathrm{MS}$ analysis for reaction mixture of captured CO_{2} hydrogenation (a) and gaseous CO_{2} hydrogenation (b). Conditions: (a) $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.005 \mathrm{mmol}, 1.3 \mathrm{mg})$, DPEphos (0.05 mmol , 13 mg), $\mathrm{DBUOH}+\mathrm{CO}_{2}$ in tetraethylene glycol dimethyl ether ($3 \mathrm{mmol}: 2.85 \mathrm{mmol}: 5 \mathrm{mmol}$), methanol (3 mL), $\mathrm{H}_{2}(4 \mathrm{MPa}), 60^{\circ} \mathrm{C}$, 16 h ; (b) $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.005 \mathrm{mmol}, 1.3 \mathrm{mg})$, DPEphos (0.05 mmol, 13 mg), DBUOH ($3 \mathrm{mmol}, 0.64 \mathrm{~g}$), methanol (3 mL), $\mathrm{CO}_{2}(4 \mathrm{MPa}), \mathrm{H}_{2}(4 \mathrm{MPa}), 60{ }^{\circ} \mathrm{C}, 16$ h.

Figure S10 ESI-MS $(4.8 \mathrm{kV})$ spectra of separated $\operatorname{HCOOH}\left(\mathrm{m} / \mathrm{z}(\%)=44.93(100)[\mathrm{M}-\mathrm{H}]^{+}\right)$.

3. The Characterization data for the absorption mixture

$P E G_{150}$ (triethylene glycol, $M W=150 \mathrm{Da}$)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.71\left(\mathrm{t},{ }^{3} \mathrm{~J}=4.8 \mathrm{~Hz}, 4 \mathrm{H}\right), 3.65(\mathrm{~s}, 4 \mathrm{H}), 3.59\left(\mathrm{t},{ }^{3} \mathrm{~J}=4.8 \mathrm{~Hz}, 4 \mathrm{H}\right)$, $3.40(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 72.62,70.25,61.50$.
$\mathrm{PEG}_{150} \mathrm{MeCl}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 2 \mathrm{H}), 3.62-3.64(\mathrm{~m}, 8 \mathrm{H}), 3.72(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 42.60,58.93,70.50,70.54,71.24,71.82 ;$ GC-MS: m/z (\%):183.02 (100), $185.03(33)\left[\mathrm{M}^{+}\right], 151.08(26), 153.07(8)\left[\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{O}\right], 103.13(61)\left[\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{OCl}\right]$.
$\mathrm{BrPEG}_{150} \mathrm{Br}$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.44-3.45(\mathrm{~m}, 4 \mathrm{H}), 3.67\left(\mathrm{~d},{ }^{3} J=2.8 \mathrm{~Hz}, 4 \mathrm{H}\right), 3.78-3.81(\mathrm{~m}, 4 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}) $\delta 30.30,70.38,71.11$.

DBU
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.17\left(\mathrm{t},{ }^{3} J=5.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.07-3.12(\mathrm{~m}, 4 \mathrm{H}), 2.27\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.4 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 1.66-1.18(\mathrm{~m}, 2 \mathrm{H}), 1.55\left(\mathrm{t},{ }^{3} \mathrm{~J}=2.4 \mathrm{~Hz}, 4 \mathrm{H}\right), 1.47(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 161.30, 52.60, 48.14, 44.04, 37.21, 29.56, 28.32, 25.80, 22.29.

$\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ (Glycol)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.73(\mathrm{~s}, 4 \mathrm{H}), 2.66(\mathrm{~s}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 63.68$.
$D B U_{2} P E G_{150} B r_{2}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 3.67-3.73(\mathrm{~m}, 12 \mathrm{H}), 3.60-3.62(\mathrm{~m}, 4 \mathrm{H}), 3.49-3.51(\mathrm{~m}, 8 \mathrm{H}), 2.83\left(\mathrm{~d},{ }^{3} J\right.$ $=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.04\left(\mathrm{t},{ }^{3} \mathrm{~J}=5.2 \mathrm{~Hz}, 4 \mathrm{H}\right), 1.68-1.71(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 167.2$, $70.1,68.0,54.8,52.5,48.9,47.2,28.0,25.4,22.6,19.6$; ESI-MS calcd for $\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}_{2} 578.18$, found $210.5[(\mathrm{M}-2 \mathrm{Br}) / 2]^{+}, 499.4,501.4[\mathrm{M}-\mathrm{Br}]^{+}$.

DBUPEG $_{150} \mathrm{Me}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.68-3.47(\mathrm{~m}, 13 \mathrm{H}), 3.32-3.29(\mathrm{~m}, 3 \mathrm{H}), 3.16-3.12(\mathrm{~s}, 5 \mathrm{H}), 2.31(\mathrm{~s}$, $1 \mathrm{H}), 1.71-1.49(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.04,71.73,71.16,70.45,70.40$, 58.87, 53.94, 48.50, 42.58, 39.13, 33.12, 29.03, 27.06, 24.32, 20.03. ESI-MS: m/z $299.4\left[\mathrm{M}+\mathrm{H}^{+}\right]$.

TMGPEG $_{150} M e$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.60(\mathrm{~s}, 6 \mathrm{H}), 2.69(\mathrm{~s}, 6 \mathrm{H}), 3.27\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.32(\mathrm{~s}, 3 \mathrm{H})$, 3.58-3.50 (m, 4H), $3.60(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.00,73.23,71.80,70.50$, $70.33,70.22,58.87,49.30,39.48,38.68$. ESI-MS: m/z $262.2\left[\mathrm{M}+\mathrm{H}^{+}\right]$.

DBUOH

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.01-1.07(\mathrm{~m}, 3 \mathrm{H}), 1.69-1.56(\mathrm{~m}, 7 \mathrm{H}), 1.94(\mathrm{~s}, 1 \mathrm{H}), 2.35-2.45(\mathrm{~m}$, $3 \mathrm{H}), 2.49-2.61(\mathrm{~m}, 2 \mathrm{H}), 3.25-3.27(\mathrm{~m}, 2 \mathrm{H}), 3.30-3.48(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{~s}, \mathrm{OH}), 3.68-3.79(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}) $\delta 176.19,64.75,56.60, ~ 49.35, ~ 45.72, ~ 45.30,36.92,29.73,28.31$, 27.57, 23.23, 20.42; ESI-MS: m/z $211.4\left[\mathrm{M}+\mathrm{H}^{+}\right]$.

3-Glycidoxypropyltrimethoxysilane

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.64-3.67(\mathrm{~m}, 2 \mathrm{H}), 3.51(\mathrm{~s}, 9 \mathrm{H}), 3.38-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.30-3.34(\mathrm{~m}$, $1 \mathrm{H}), 3.08(\mathrm{~s}, 1 \mathrm{H}), 2.73(\mathrm{~s}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 1 \mathrm{H}), 1.64\left(\mathrm{t},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 0.617\left(\mathrm{t},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right)$; ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}) $\delta 73.37,71.24,50.71,50.35,44.17,22.66,5.08$.

DBUOH@Silica

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $_{6}$) $\delta 3.53(\mathrm{~s}, \mathrm{OH}), 3.04-3.16(\mathrm{~m}, 8 \mathrm{H}), 2.25(\mathrm{~s}, 2 \mathrm{H}), 1.26-1.63(\mathrm{~m}$, $11 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H}), 0.46-0.54(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, DMSO-d ${ }_{6}$) $\delta 160.78,70.71,64.17$, $52.01,48.77,47.67,43.24,35.99,29.18,28.14,26.37,25.81,22.25,13.81,11.85$.
$\operatorname{DBUPEG}_{150} \mathrm{Me} / \operatorname{Glycol}(1: 2)+\mathrm{CO}_{2}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.57-1.65(\mathrm{~m}, 6 \mathrm{H}), 1.86-1.95(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.76(\mathrm{~m}, 2 \mathrm{H}), 3.18-3.28$ $(\mathrm{m}, 7 \mathrm{H}), 3.28-3.56(\mathrm{~m}, 22 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.76,151.29,71.47,70.90$, $70.13,63.40,58.61,54.13,48.36,42.47,37.76,32.11,28.58,26.32,23.57,19.08$.

TMGPEG $_{150} \mathrm{Me} / \operatorname{Glycol}(1: 5)+\mathrm{CO}_{2}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.78\left(\mathrm{t},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 9 \mathrm{H}\right), 3.16\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 4 \mathrm{H}\right), 3.33(\mathrm{~s}, 2 \mathrm{H})$, 3.41-3.45 (m, 30H), $3.77(\mathrm{~s}, 2 \mathrm{H}), 5.0(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 162.17,158.73$, $71.27,69.83,69.70,69.03,66.66,63.00,61.12,58.31,44.26,39.25$.

$\mathrm{DBUOH}+\mathrm{CO}_{2}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.92-1.00(\mathrm{~m}, 3 \mathrm{H}), 1.47-1.67(\mathrm{~m}, 8 \mathrm{H}), 2.34-2.43(\mathrm{~m}, 3 \mathrm{H}), 2.51-2.58$ $(\mathrm{m}, 2 \mathrm{H}), 3.18-3.31(\mathrm{~m}, 4 \mathrm{H}), 3.61(\mathrm{~s}, 0.5 \mathrm{H}), 3.79(\mathrm{~s}, 0.5 \mathrm{H}), 5.21(\mathrm{~s}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 176.19,164.25,63.90,55.93,49.19,45.36,45.01,36.64,29.48,28.04,26.44,23.00$, 20.41.
4. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Charts

1H NMR (D20, 400 MHz)

- 167.157

Ig os is =$\stackrel{\circ}{\circ} \dot{\sim}$	

13C NMR (D20, 100.6 MHz)

$$
11-16
$$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \mathbf{1 0 0 . 6} \mathbf{~ M H z}\right)$

-176.185

${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, \mathbf{1 0 0 . 6} \mathbf{~ M H z}$)

è
त्
त्
N
is
i
i

13C NMR(CDCl3, 100.6 MHz)

-176.193
-164.245

5. IR spectra

DBU@PS

Epoxide@Silica

DBUOH@Silica

DBUOH

DBUPEG $_{150} M e$

TMGPEG $_{150} M e$

$D B U_{2} P E G G_{150} \mathrm{Br}_{2}$

6. ESI-MS

7. References

1. Z.-Z. Yang, Y.-N. Zhao, L.-N. He, J. Gao and Z.-S. Yin, Green Chem., 2012, 14, 519-527.
2. Z.-Z. Yang, L.-N. He, Y.-N. Zhao and B. Yu, Environ. Sci. Technol., 2013, 47, 1598-1605.
3. M. Kim and J.-W. Park, Chem. Commun., 2010, 46, 2507-2509.
4. (a) D. J. Heldebrant, P. K. Koech, M. T. C. Ang, C. Liang, J. E. Rainbolt, C. R. Yonker and P. G. Jessop, Green Chem., 2010, 12, 713-721; (b) P. K. Koech, J. Zhang, I. V. Kutnyakov, L. Cosimbescu, S.-J. Lee, M. E. Bowden, T. D. Smurthwaite and D. J. Heldebrant, RSC Adv., 2013, 3, 566-572.
5. H. Yang, X. Han, Z. Ma, R. Wang, J. Liu and X. Ji, Green Chem., 2010, 12, 441-451.
6. P. Li, L. Wang, Y. Zhang and G. Wang, Tetrahedron, 2008, 64, 7633-7638.
7. M. Tomoi, Y. Kato and H. Kakiuchi, Die Makromolekulare Chemie, 1984, 185, 2117-2124.
8. E. D. Bates, R. D. Mayton, I. Ntai and J. H. Davis, J. Am. Chem. Soc., 2002, 124, 926-927.
9. J. C. Tsai and K. M. Nicholas, J. Am. Chem. Soc., 1992, 114, 5117-5124.
10. Z.-Z. Yang, L.-N. He, Y.-N. Zhao, B. Li and B. Yu, Energy Environ. Sci., 2011, 4, 3971-3975.
11. P. G. Jessop, D. J. Heldebrant, X. Li, C. A. Eckert and C. L. Liotta, Nature, 2005, 436, 1102-1102.
