Hydrogen-bond-assisted isotactic-specific radical polymerization of *N*-vinyl-2-pyrrolidone with tartrate additives in toluene at low temperatures: high-resolution ¹H NMR analysis

Tomohiro Hirano*, Yuya Miyamoto, Shinya Amano, Kazuya Tatsumi, Takuya Anmoto, Hiroshi Kimura, Ken Yoshida, Miyuki Oshimura, and Koichi Ute

Fig. S1 ¹H NMR spectra of the CH_{2,C=O} of PVP measured at different magnetic field strengths.

Fig. S2 400 MHz ¹H NMR spectra of VP (0.1 mol/L), L-EtTar (0.1 mol/L) and an equimolar mixture of the two components (0.1 mol/L for each) in toluene- d_8 at -60 °C.

Fig. S3. Temperature dependence of the chemical shift difference between the peaks assignable to the *mm* and *mr* triads in the signals of the $CH_{2,C=0}$ groups of the PVPs (Table 1, run 6) measured in D_2O and $DMSO-d_6$. The chemical shift difference arising from the polymer concentration (2.0 and 4.0 wt% in $DMSO-d_6$) was one order of magnitude smaller than that arising from the difference in solvent species (in $DMSO-d_6$ and D_2O at the fixed polymer concentration of 2.0 wt%).

Fig. S4. 500 MHz ¹H NMR spectra of PVP in CDCl₃ at temperature in the range of 150–250 °C (Table 1, run 6, 4.0 wt%).

Fig. S5. 500 MHz ¹H NMR spectra of PVP in DMSO- d_6 at temperature in the range of 25–250 °C (Table 1, run 6). The spectra at 25–150 °C (2.0 wt%) and 200–250 °C (4.0 wt%) were recorded using standard and high-temperature probes, respectively.

Fig. S7. 500 MHz ¹H NMR spectra of the CH_{2,C=O} of PVPs (Table S1, runs 14 & 15) measured in D₂O at 25 °C, and temperature dependence of the Φ_{mm-mr} and Φ_{mr-rr} .

Scheme S1. Proposed configuration for the two polymers during the termination reaction with their propagating ends complexed with L-EtTar.

Table S1. Radical polymerization of VP in water or $(CF_3)_3COH$ at low temperatures for 24 h, average lengths of *m* diad ($\overline{}_m$) of the polymers obtained and first order Markovian parameters for the polymerizations.^a

Run	$[VP]_0$	Salvant	Temp. °C	Yield %	$M_{\rm n} \times 10^{-3{\rm b}}$	$M_{\rm w}/M_{\rm n}^{\rm b}$	Triad tacticity ^c / %			- 1	Markovian Parameters		
	mol L ⁻¹	Solvent					f_{mm}	f_{mr}	f_{rr}	m	$P_{m/r}^{e}$	$P_{r/m}^{\rm f}$	$P_{m/r} + P_{r/m}$
14	2.0	water	0	63	52.8	8.6	14.4	57.4	28.2	1.50	0.666	0.504	1.170
15	9.4	(CF ₃) ₃ COH	-40	13	14.5	2.8	22.5	61.6	15.9	1.70	0.578	0.660	1.238

^a $[n-\text{Bu}_3\text{B}]_0 = 0.05 \text{ mol } L^{-1}$. ^b Determined by SEC. ^c Determined by ¹H NMR. ^d $_m = (f_{mm} + f_{mr}/2) / (f_{mr}/2)$. ^c $P_{m/r} = (f_{mr}/2) / (f_{mr}/2)$.