Supporting Information

Catalytic dehydrogenation of isobutane over Co-based catalysts

By

Guowei Wang^a, Xiaolin Zhu^{a,b}, Jiaoyu Zhang^a, Yanan Sun^a, Chunyi Li^{a,*}, Honghong Shan^a

^a State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, China

^b Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

*Corresponding author: Chunyi Li

State Key Laboratory of Heavy Oil Processing

China University of Petroleum

Qingdao 266580, PR China

Tel.: +86 532 86981862

Fax: +86 532 86981718

E-mail address: chyli_upc@126.com, chyli@upc.edu.cn

^{*} Corresponding author. Tel.: +86 532 86981862; fax: +86 532 86981718.

E-mail address: chyli_upc@126.com, chyli@upc.edu.cn (C. Li).

List of contents:

Fig. S1 Catalytic performance of sulfided 13Co/SiO₂ catalyst calcined at 560 °C in isobutane dehydrogenation.

Fig. S2 Catalytic performance of sulfided $13Co/SiO_2$ catalyst calcined at 560 °C within different sulfidation-reaction cycles.

Fig. S1 Catalytic performance of sulfided 13Co/SiO₂ catalyst calcined at 560 °C in isobutane dehydrogenation.

Fig. S2 Catalytic performance of sulfided Co/SiO₂ catalyst calcined at 560 °C within different sulfidation-reaction cycles.