Supplementary Material (ESI) for RSC Advances.

Immobilization of Palladium Catalyst on Magnetically Separable Polyurea Nanosupport

Suzana Natour and Raed Abu-Reziq*a

Institute of Chemistry, Casali Center of Applied Chemistry and Center for Nanoscience and Nanotechnology, the Hebrew University of Jerusalem, Jerusalem 91904, Israel. Fax: +972-2-6585469, E-mail: <u>Raed.Abu-Reziq@mail.huji.ac.il</u>

Fig. S1. TEM micrograph of a) magnetic nanoparticles and b) MNPs-IL-C₄.

Fig. S2. Particle size distribution of a) pure PU NPs and b) MNPs-IL-C₄@PU NPs.

Fig. S3. Transmission FTIR spectra of a) pure PU NPs b) MNPs-IL-C₄@PU NPs.

Fig. S4. EDS analysis of Pd_{ad} on the surface of MNPs-IL-C₄@PU NPs.

Fig. S5. XRD pattern of a) pure magnetite and b) $Pd_{ad}/MNPs-IL-C_4@PU NPs$.

Fig. S6. EDS analysis of Pd_{en} within the MNPs-IL-C₄@PU NPs.

Fig. S7. a) TEM and b) EDS of Pd NPs supported on MNPs-IL-C₄.

Fig. S8. XPS spectrum of the Pd_{ad} system a) before and b) after hydrogenation reaction showing Pd $3d_{5/2}$ and Pd $3d_{3/2}$ binding energies.

Fig. S9. XPS spectrum of the Pd_{en} system a) before and b) after hydrogenation reaction showing Pd $3d_{5/2}$ and Pd $3d_{3/2}$ binding energies.

Entry	Substrate	Product ^b	Yield (%) ^c
1			100
2			100
3	CI	CI	100
4			100
5	H ₃ CO	H ₃ CO	100
6	CI	CI	100

Table S1. Hydrogenation reaction of aromatic alkenes catalysed by $Pd_{ad}/MNPs$ -IL-C₄@PU NPs.^a

^a Reaction conditions: 1.1 g of the Pd_{ad}/MNPs-IL-C₄@PU NPs suspension in heptane containing 0.008 mmol of palladium catalyst, 1.6 mmol substrate in 5 mL heptane, 40 psi hydrogen, 2 h at 50 °C. ^b Products were characterized by ¹H-NMR spectroscopy. ^c Yield was determined by ¹H-NMR spectroscopy and GC.

Entry	Substrate	Product ^b	Yield (%) ^c
1			41 (100) ^d
2			48(65) ^d
3	CI	CI	67 (85) ^d
4			11 (38) ^d
5	H ₃ CO	H ₃ CO	27
6	CI	CI	0

Table S2. Hydrogenation reaction of aromatic alkenes catalysed by Pd_{en} system.^a

^a Reaction conditions: 1 g of the Pd encapsulated in MNPs-IL-C₄@PU NPs dispersed in heptane containing 0.008 mmol of palladium catalyst, 1.6 mmol substrate in 5 mL heptane, 40 psi hydrogen, 2 h at 50 °C. ^b Products were characterized by ¹H-NMR spectroscopy. ^c Yield was determined by ¹H-NMR spectroscopy and GC.^d Yields obtained when the reaction time was prolonged to 6 h.