Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

COMMUNICATION

Journal Name

Conventional polymer solar cells with power conversion efficiencies increased to >9% by a combination of methanol treatment and an anionic conjugated polyelectrolyte interface layer

Tao Yuan,^a Dong Yang,^b Xiaoguang Zhu,^a Lingyu Zhou,^b Jian Zhang,^{*b} Guoli Tu^{*a} and Can Li^b

^aWuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China. E-mail: tgl@hust.edu.cn

^bState Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory of Clean Energy, Dalian 116023, People's Republic of China. E-mail: jianzhang@dicp.ac.cn

Figure S1. XPS survey of the top surfaces at various conditions.

Figure S2.The current density-voltage (*J-V*) characteristics of the PSCs with $PF_{EO}SO_3Na$ interlayer spin-coated at different solutions under AM 1.5G irradiation (100 mW cm⁻²).

The $PF_{EO}SO_3Na$ was dissolved in methanol, and the thickness of $PF_{EO}SO_3Na$ layer was optimized by varying the concentrations of its methanol solutions from 0.1 mg/ml to 0.5 mg/ml with fixed spin-coating speed and was measured by AFM. The optimized concentration of spin-coated $PF_{EO}SO_3Na$ interlayer was 0.25mg/mL. The *J*sc and *FF* of the resulting PSCs were highly dependent on the thickness of $PF_{EO}SO_3Na$. When spin-coated from 0.1mg/mL solution, the $PF_{EO}SO_3Na$ film could only cover a small part of the active layer, which led to a moderate enhancement. When the concentration of $PF_{EO}SO_3Na$ was further increased to 0.5mg/mL, the performance was reduced because the $PF_{EO}SO_3Na$ film was too thick and acted as an insulating layer. The detailed devices characteristics with different $[PF_{EO}SO_3Na]$ were summarized in Table S1.

Figure S3. J-V curves of the hole mobility devices with methanol and PF_{E0}SO₃Na cathode interface layer or without interlayer.

To confirm the effect of methanol treatment and $PF_{EO}SO_3Na$ layer on charge transport property, hole only devices with configuration of ITO/PEDOT:PSS/PTB7:PC₇₁BM/MoO3/Au with or without methanol treatment and $PF_{EO}SO_3Na$ layer were constructed and their hole mobility was calculated from the space charge limited current (SCLC) J-V curves obtained in the dark (Figure S3). SCLC can be

characterized by the Mott-Gurney square law: $J = \frac{9}{8} \varepsilon_r \varepsilon_0 \mu_0 \frac{V^2}{L^3}$, in which ε_0 is the vacuum permittivity, ε_r is the dielectric permittivity of the active layer, L is the thickness of the active layer and μ_0 is the hole mobility. In pristine PTB7:PC₇₁BM devices, the hole mobility was 1.7×10^{-4} cm⁻² V⁻¹ s. After combination of methanol treatment and PF_{E0}SO₃Na layer, the hole mobility was increased to 4.0×10^{-4} cm⁻² V⁻¹ s, which suggested that the hole transport in devices with methanol treatment and PF_{E0}SO₃Na layer was improved.

Cathode	V _{oc}	$J_{ m sc}$	FF	PCE
	[V]	[mA cm ⁻²]	[%]	[%]
0.1mg/mL	0.74	15.1	65.8	7.36
0.25mg/mL	0.74	16.5	69.5	8.50
0.5mg/mL	0.75	15.9	65.5	7.83

Table S1. Device performance of PSCs obtained with different $[PF_{EO}SO_3Na]$.