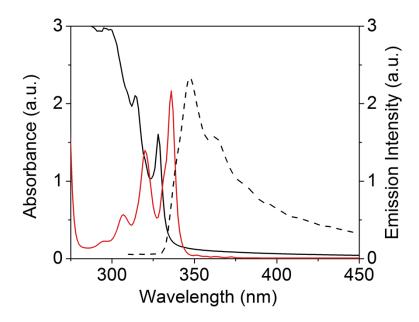

Supporting Information for:


Hydrogen-bonding Driven Luminescent Assembly and Efficient Förster Resonance Energy Transfer (FRET) in Dialkoxynaphthalene-Based Organogel

Dipankar Basak, Anindita Das and Suhrit Ghosh*

Indian Association for the Cultivation of Science, Polymer Science Unit 2A & 2B Raja S. C. Mullick Road, Kolkata, India-700032
*Corresponding author Email: psusg2@iacs.res.in

Fig. S1: Energy minimized structure of **DAN-1** obtained by molecular modeling using Chem 3D-ultra 8 using MM2 for energy minimization

Fig. S2: Absorption (black solid line) and emission spectra (black dotted line) of **DAN-1** gel (in MCH, 2.0 mM) and absorption spectra (red solid line) of pyrene in MCH (2.0x10⁻⁴ M)

Table S1: Fluorescence lifetime data for **DAN-1** in (a) gel state (in MCH, 2 mM) and (b) sol State (in THF, 2 mM) λ_{ex} = 295 nm, emission was monitored at 346 nm

Sample	Component Lifetimes (ns) ^a		
	$ au_1$	τ_2	$ au_{ m avg}$
a) Gel	3.09 (48 %)	6.07 (52%)	5.11
b) Sol	7.2 (100%)		7.2

^aValues in parenthesis shows the decay contribution in each life times. Average life time (in the gel state) was calculated using the following equation[1]: $\tau_{avg} = (a_1\tau_1^2 + a_2\tau_2^2)/(a_1\tau_1 + a_2\tau_2)$

Reference

1. Lakowicz JR (1999) Principles of Fluorescence Spectroscopy (2nd ed.). Kluwer Academic/Plenum Publishers, New York.