Photocatalytic reduction of Cr (VI) by polyoxometalates-TiO₂ electrospun nanofiber composites

Duoying Zhang,^a Xu Li,^a Huaqiao Tan,^b Guoqiang Zhang,^{bc} Zhao Zhao,^{bc} Hongfei Shi,^b Lingtong Zhang,^b Weixing Yu,^b Zaicheng Sun^{b*}

^a Department of Elelctronic Engineering, Jinan University, Guanzhou, 510632, P. R. China

^b State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, 3888 East Nanhu Road, Changchun 130033, P. R. China. Email: sunzc@ciomp.ac.cn

c University of Chinese Academy of Sciences, Beijing 100000, P. R. China

(C)

Figure S1. EDAX spectra of PTA-TiO2 nanofiber composites with different molar ratio of PTA and $Ti(O^{j}Pr)_{4}$ (A) 10%, (B)20%, (C)30%.

Figure S2. High resolution W 4f XPS spectra of PTA-TiO₂ before and after photoreduction Cr(VI).

Figure S3. High resolution Ti 2p XPS spectra of PTA-TiO₂ before and after photoreduction Cr(VI).

Figure S4. High resolution O 1s XPS spectra of PTA-TiO₂ before and after photoreduction Cr(VI).

Figure S5. The cyclic voltammetry of H3PTA. Three electrodes electrochemical cells (Glass-carbon electrode, Pt and Ag/AgCl as working, counter and reference electrode, electrolyte is 0.1M Na₂SO₄/H₂SO₄ aqueous solution pH=1.5, the H₃PTA concentration is 10⁻³ mol/L)

Fiugre S6. Optical band gap of H_3PTA