Supplementary information

Magnetic Metrology for iron oxide nanoparticles scaled-up

synthesis

Irena Milosevic¹, Fabienne Warmont², Yoann Lalatonne¹ and Laurence Motte^{1*}

¹ Université Paris 13, Sorbonne Paris Cité, Laboratoire CSPBAT, CNRS, UMR 7244, 74 avenue M.

Cachin 93017 Bobigny, France.

² CRMD, UMR 6619 CNRS, 1b rue de la Férollerie 45 071 Orléans , France .

Figure S1: Typical time series of the nucleation and growth process followed with MIAtek reader for longer reaction time.

Calculation of boundary window for estimated ranges for surface and bulk-energy ratio for Fh/Mt stability. In our experimental conditions, we added 0.014 mol min⁻¹ Fe to 750 ml total volume. Considering the nucleation of Mt from primary particles within 3 min, this is equivalent to an iron concentration $c(Fe) < 6. 10^{-3}$ M. Taking solubility and surface energy of Mt and Fh, reported in *Baumgartener publication:* $Cs(Mt) = 5.10^{-8}$ M and $C(Fh) = 10^{-7} - 10^{-6}$ M, $\gamma_{Fh} = 0.2 - 0.4$ J m⁻² and $\gamma_{Mt} = 0.79$ J m⁻² therefore g_{Fh}/g_{Mt} is in the range of 0,7-0,94 and $\gamma_{Fh}/\gamma_{Mt} = 0.25 - 0.5$. The respective ranges correspond to window stability defined in phase diagram calculated by *Baumgartener et al* (Fig 4 rectangle)¹

Baumgartner, J. et al., Nucleation and growth of magnetite from solution. *Nat Mater*, **12**, 310-314 (2013).

Figure S2: TEM images and electron diffraction patterns of the various aliquoted samples

a) t2

b) t5

c) t10

d) t20

e) t30

TEM images with various magnifications

