Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Journal Name

RSCPublishing

ARTICLE

Supporting material

Simple approach for the immobilization of horseradish peroxidase on Poly-Lhistidine modified reduced graphene oxide for amperometric determination of Dopamine and H₂O₂

A.T. Ezhil Vilian, Shen-Ming Chen*

Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (R.O.C).

* Corresponding author. Fax: +886 2270 25238; Tel: +886 2270 17147, E-mail: smchen78@ms15.hinet.net

Fig. S1. Cyclic voltammograms of the reduction process of GO on GCE in 0.05 M of the pH 5 PBS containing 10 mM P-L-His); scan rate: 50 mV s⁻¹.

Fig. S2. FTIR spectra of (a) GO, and (b) P-L-His-RGO.

Fig. S3. Linear sweep voltammetric measurements for 3mM DA in 0.05 M PBS on the (a) bare GCE, (b) RGO modified GCE electrodes, (c) P-L-His-RGO modified GCE electrodes, (d) HRP/P-L-His-RGO modified GCE electrodes. Scan rate: 0.5 V s⁻¹.

Fig. S4. CVs of $3mM H_2O_2$ in 0.05 M PBS on the (a) bare GCE, (b) RGO modified GCE electrodes, (c) P-L-His modified GCE electrodes, (d) P-L-His-RGO modified GCE electrodes, (e) HRP/P-L-His-RGO modified GCE electrodes. Scan rate: 0.5 V s⁻¹.

Fig. S5. Amperometric response of the HRP/P-L-His-RGO modified rotating disc GCE electrodes to 100 μ M DA in the presence of some coexisting compounds (100 μ M ascorbic acid (AA), 100 μ M glucose (Glu), 100 μ M uric acid (UA), and 100 μ M cysteine (Cys) in the 0.05 M phosphate buffer solution (pH 7.0); applied potential: +0.23 V.

Fig. S6. Amperometric responses of the HRP/P-L-His-RGO modified rotating disc GCE electrodes upon addition of 100 μ M of H₂O₂, 100 μ M ascorbic acid (AA), 100 μ M uric acid(UA), and 100 μ M glucose (Glu) solutions into a continuously stirred N₂ saturated 0.05 M phosphate buffer solution (pH 7.0); applied potential: -0.2 V.

Table S1

Modified	Method	Linear range	LOD	Ref
electrodes		μΜ	μΜ	
Reduced graphene oxide/Pd- NPs	LSV	1 to 150	0.233	[1]
Graphene	DPV	4 to 100	2.64	[2]
Graphene-layered double hydroxid	SWV	1 to 199	0.3	[3]

Comparison of the performance of different modified electrodes used in the electrocatalysis of dopamine.

Cu ₂ O/Graphene	CV	0.1 to 10	0.01	[4]
Au-NPs/polyaniline	Amperometry	3 to 115	0.8	[5]
Calix[4]arene crown-4 ether/GCE	CV	20-1000	3.4	[6]
Polychromotrope 2B/GCE	DPV	2-80	0.3	[7]
Poly(sulfosalicylic acid)/GCE	DPV	0.55-22 and 22-110	0.005	[8]
MWCNT/b-CD/GCE	CV	10-80	37	[9]
Nanocuprous oxide- methylene blue composite/GCE	CV	0.1-320	0.046	[10]
Graphene/carbon fiber microelectrode	CV	0.01-100	0.01	[11]
Cysteamine-MWCNT/gold electrode	DPV	0.2-100	0.02	[12]
HRP-MWCNTs- silica sol- gel /Poly glycine / carbon paste electrode	DPV	15-165	0.6	[13]
HRP-PEGylated polyurethane (PU-PEG)	SWV	17-1900	2.0	[14]
HRP/P-L-His-RGO/ GCE	Amperometry	0.2-12000	0.42	This work

Table S2.

Determination of dopamine in urine and serum samples

Samples	Added [µM]	Found [µM]	Recovery (%)
Urine sample	5	4.4	99.2
	10	10.2	103.1
Serum sample	5	4.8	103.6
	10	9.6	104.1

References

- 1 S. Palanisamy, S. Ku, S. Chen, *Microchim Acta* 2013, 180,1037-1042.
- 2 Y. Kim, S. Bong, Y. Kang, Y. Yang, R. Mahajan, J. Kim, H. Kim, *Biosens Bioelectron* 2010, **25**, 2366-2369.
- 3 Y. Wang, W. Peng, L. Liu, M. Tang, F. Gao, M. Li, Microchim Acta 2011, 174, 41-46.
- 4 F. Zhang, Y. Li, Y. Gu, Z. Wang, C. Wang, Microchim Acta 2011, 173, 103-109.
- 5 A. Wang, J. Feng, Y. Li, J. Xi, W. Dong, Microchim Acta 2010, 171, 431-436.
- 6 G. S. Lai, H. L. Zhang, C. M. Jin, *Electroanalysis*, 2007, 19, 496-501.
- 7 X. H. Liu, Q. Zhuang, J. H. Chen, S. B. Zhang , Y. J. Zheng, Sens. Actuators, B, 2007, 125, 240-245.
- 8 H. Zhao, Y. Z. Zhang, Z. B. Yuan, Anal. Chim. Acta, 2001, 441, 117-122.
- 9 G. Alarc'on Angeles, B. P'erez L'opez, M. Palomar Pardave, M. T. Ram'ırez Silva, S. Alegret, A. Merkoçi, *Carbon*, 2008, 46, 898-906.
- 10 C. Y. Liu, J. F. Hu, J. M. Hu, H. W. Tanga, *Electroanalysis*, 2006, 18, 478 -484.
- 11 M. F. Zhu, C. Q. Zeng, J. S. Ye, *Electroanalysis*, 2011, 23, 907-914.
- 12 S. Shahrokhian, A. Mahdavi-Shakib, M. Ghalkhani, R. Saberi, *Electroanalysis*, 2012, 24, 425 -432.
- P. Raghu, T. Madhusudana Reddy, P. Gopal, K. Reddaiah, N.Y. Sreedhar, *Enzyme Microb. Technol.* 2014, 57, 8-15
- 14 M. Garcia, F. Monteiro, T. Cristofolini, J. Acu^{*}na, B. Ramos, I. liveira, V. Soldi, A. Pasa, T Creczynski-Pasa, *Sens. Actuators, B*, 2013, **182**, 264-272.