Enhanced supercapacitor performance by incorporating nickel in manganese oxide

Preety Ahuja, Sanjeev Kumar Ujjain, Raj Kishore Sharma* and Gurmeet Singh Department of Chemistry, University of Delhi, Delhi 110 007, INDIA

SUPPLEMENTARY INFORMATION

INDEX

- **Figure S1** Pore size distribution of $Ni_yMn_{1-y}O_x$; y=0, 0.2 and 0.4.
- Figure S2 XRD pattern of $Ni_{0.2}Mn_{0.8}O_x$ annealed at 450°C with quantification of phases by Rietveld method.
- Figure S3 XRD pattern of $Ni_{0.2}Mn_{0.8}O_x$ annealed at 650°C with quantification of phases by Rietveld method.

Figure S1 Pore size distribution of $Ni_vMn_{1-v}O_x$; y=0, 0.2 and 0.4.

Pore size distribution of MnO_x demonstrate the presence of mesopores (5-20 nm). It is interesting to note that upon introducing Ni⁺² ions to MnO_x lattice, the matrial demonstrate a decrease in pore diameter. Typically in Ni_{0.2} $Mn_{0.8}O_x$, majority of pores fall in the optimal sizes of 2-5 nm for supercapacitor which is in agreement with the high surface area and consequently resulted in enhanced capacitance. Inset shows mangnified y axis.

Figure S2: XRD pattern of $Ni_{0.2}Mn_{0.8}O_x$ annealed at 450°C with quantification of phases by Rietveld method.

Quantification of XRD pattern of $Ni_{0.2}Mn_{0.8}O_x$ is achieved by Xpert High Score software via Rietveld method and shows prominent phase $NiMn_2O_4$ (81.3%)

Figure S3: XRD pattern of $Ni_{0.2}Mn_{0.8}O_x$ annealed at 650°C with quantification of phases by Rietveld method.

XRD pattern of Ni_{0.2}Mn_{0.8}O_x shows 55.5% NiMn₂O₄ with 44.5% NiMnO₃ by quantification via Xpert high Score software using Rietveld method. This is in agreement with the thermal decomposition of Ni_{0.2}Mn_{0.8}O_x at higher temperature with the appearance of two different phases NiMn₂O₄ and NiMnO₃.