Three-dimensional Hierarchical Self-Supported NiCo2O4 Carbon Nanotube Core-Shell Networks as High Performance Supercapacitor Electrodes

Xiaocheng Li^{a*} Wei Sun^{a, b}, Liqun Wang^{a, c}, Yongdong Qi^{a,b}, Tieming Guo^c, Xinhong

Zhao^b, Xingbin Yan^a.

^aLaboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China

^bSchool of petrochemical engineering, Lanzhou University of Technology, Lanzhou

730050, P. R. China. ^cState Key Laboratory of Advanced Processing and Recycling of

Nonferrous Materials, Lanzhou University of Technology, Lanzhou 730050, P. R.

China

^{*}Corresponding author. Tel./fax: +86-931-4968040; Email: xiaocheng@licp.cas.cn

Figure S1 Camera-captured image of water droplet on CNT/NF substrate before and after air plasma treatment: a) before and b) after air plasma treatment. In both two cases, it is difficult to measure the contact angle of water droplet on pristine CNT/NF substrate and air plasma-treated CNT/NF substrate due to the highly porous feature of CNT/NF substrate. However, we can distinguish their subtle difference in wetting ability. For pristine CNT/NF substrate, the water droplet can slowly approaches to it and then spread along the sample surface. Figure S1a is the camera-captured image of water droplet as it contact with the pristine CNT/NF substrate, indicating a moderate wetting ability. After treated by air plasma, the water droplet instantly penetrates into CNT/NF substrate and immediately disappears, indicating its excellent wetting ability.

Figure S2 (a) the low and (b) high magnification FESEM images of vertically aligned

NiCo₂O₄ nanosheets on NF surface.

Figure S3 EIS spectra of NiCo₂O₄/CNT/NF electrode and NiCo₂O₄/NF electrode measured at 0.24 V in an alternating current frequency ranging from 0.01 to 3×10^4 Hz with an excitation signal of 5 mV. The inset image is EIS spectrum of NiCo₂O₄/CNT/NF electrode at high-/medium frequency region.

Figure S4 CDC curves of commercial AC at various current densities. The commercial AC electrode demonstrated the capacitance of 275, 250, 237, 222 and 197 F g^{-1} at current density of 1, 2, 3, 5, 10 A g^{-1} .

Figure S5 Relationship between the square root of scan rate and current density for

assembled asymmetric device.

Material	Specific	Rate	Cycling stability	Loading mass	Electrode	Ref.
	capacitance	capability			process	
Porous NiCo ₂ O ₄	658 F g ⁻¹	530 F g ⁻¹	98.5%	1 mg/cm ²	Slurry and	30
	(1 A g ⁻¹)	(10 A g ⁻¹)	(1000 cycles @ 10 A g ⁻¹)		coating	
Flower-like	658 F g ⁻¹	515 F g-1	No observable degradation		Slurry and	52
	C		(10000 cycles at varying			
NiCo ₂ O ₄	(1 A g ⁻¹)	(20 A g ⁻¹)	current densities)		coating	
NiCo ₂ O ₄ nanorods	490 F g ⁻¹		7%	0.3 mg/cm ²	In situ	50
	(2 mA)	-	(1000 cycles @ 2 mA)		growth	
NiCo ₂ O ₄ nanowires	245 F g ⁻¹	191 F g ⁻¹	115%	0.52 mg/cm ²	In situ	53
	(1 A g ⁻¹)	(10 A g ⁻¹)	(1000 cycles @ 10 A g ⁻¹)		growth	
NiCo ₂ O ₄ nanowires	760 F g ⁻¹	532 F g ⁻¹	81%	1 mg/cm ²	Slurry and	24
	(1 A g ⁻¹)	(20 A g ⁻¹)	(3000 cycles @ 10 A g ⁻¹)		coating	
NiCo ₂ O ₄ /graphene	835 F g ⁻¹	635 F g ⁻¹	108%	~1.68 mg/cm ²	Slurry and	54
	(1 A g ⁻¹)	(20 A g ⁻¹)	(4000 cycles @ 2 A g ⁻¹)	(NiCo ₂ O ₄)	coating	54
Nickel Cobalt	1642 F g ⁻¹	879 F g ⁻¹	94%	0.5 mg/cm ²	In situ	55
oxide/SWCNT	(0.5 A g^{-1})	(20 A g ⁻¹)	(2000 cycles @ 0.5 A g-1)		growth	
Self-standing	895 F g ⁻¹	685 F g ⁻¹	73%	0.54 mg/cm ²	In situ	56
NiCo2O4 nanosheet	(1 A g ⁻¹)	(20 A g ⁻¹)	(2000 cycles @ 5 A g ⁻¹)		growth	
NiCo ₂ O ₄ /vertically	695 F g ⁻¹	576 F g ⁻¹	91%	0.62 mg/cm ²	In situ	33
aligned CNT	(1 A g ⁻¹)	(20 A g ⁻¹)	(1500 cycles @ 4 A g ⁻¹)		growth	33
NiCo ₂ O ₄ /CNT	1533 F g ⁻¹	1335 F g ⁻¹	102% (2500 cycles @ 3, 5,	0.78 mg/cm ²	In situ	This
	(3 A g ⁻¹)	(30 A g ⁻¹)	10, 3 A g ⁻¹)		growth	work

Table S1 Comparison of the electrochemical performance of the as-prepared NiCo2O4/CNT/NF electrode with the reported ones