Electronic Supplementary Information (ESI)

Size-selected boron nitride nanosheets as oxygen-atom corrosion resistant fillers

Min Yi,*^{ab} Zhigang Shen,*^a Lei Liu,^a and Shuaishuai Liang^a

^a Beijing Key Laboratory for Powder Technology Research and Development, Beijing

University of Aeronautics and Astronautics (Beihang University, BUAA), Beijing

100191, China.

^b Institute of Materials Science, Technische Universität Darmstadt, Darmstadt 64287, Germany.

E-mail: <u>yimin@buaa.edu.cn;</u> <u>shenzhg@buaa.edu.cn</u>

Experimental

1.8 g PVA (polyvinylalcohol, Beijing Yili Fine Chemicals Co., Ltd., M_w =77000±2200 g/mol) was dissolved in 60 mL water (~90 °C) and magnetically stirred for 8 h to form homogeneous solution with a PVA concentration of 30 mg/mL. Then 0.6 g crystal BN powder (Alfa Aesar, \leq 300 mesh) were added into the PVA solution and sonicated for 8 h in a tip sonic bath (50% of 650W, 3s on, 3s off) with ice cooling. The sonicated dispersions were further centrifuged at 3000rpm (×2304) for 45 min. The top 90% supernatant was collected for further characterization and use. The BNNSs concentration was estimated as ~0.22 mg/mL by TGA analysis of the PVA/BNNSs powder, as the TGA curve shown in Figure S1. The resultant dispersions were then mixed with PVA solution (30 mg/mL) to give a range of composite dispersions with different mass fraction of BNNSs.

After the centrifugation at 3000rpm (\times 2304g), the sediment was expected to contain medium BNNSs and unexfoliated thick BN flakes. So 40 mL PVA solution (30 mg/mL) was added to dissolve the sediment, followed by sonication for another 2 h by a mild bath sonicator (100 W, 40 KHz) with water cooling. Then 1500rpm (\times 576g) was used to centrifuge this dispersion and the supernatant was collected. By the method mentioned above, the BNNSs concentration of this dispersion was estimated as ~0.94 mg/mL by TGA analysis of the PVA/BNNSs powder, as the TGA curve shown in Figure S1. The resultant dispersions were expected to contain medium BNNSs. These dispersions were also then mixed with PVA solution (30 mg/mL) to give a range of composite dispersions with different mass fraction of BNNSs.

After the centrifugation at 1500rpm (\times 576g), the sediment was expected to contain large BNNSs and unexfoliated thick BN flakes. So 30 mL PVA solution (30 mg/mL) was added to dissolve the sediment, followed by sonication for another 1 h by a mild bath sonicator (100 W, 40 KHz) with water cooling. Then 500rpm (\times 64g) was used to centrifuge this dispersion and the supernatant was collected. By the method mentioned above, the BNNSs concentration of this dispersion was estimated as ~2.8 mg/mL by TGA analysis of the PVA/BNNSs powder, as the TGA curve shown in Figure S1. These dispersions were also then mixed with PVA solution (30 mg/mL) to give a range of composite dispersions with different mass fraction of BNNSs.

The above composite dispersions were further formed into films for oxygen-atom corrosion test. To form films, after sonication for 20 min, these dispersions were drop cast into high density polyethylene trays and left for 24 h in a vacuum over at 60°C with a pressure of 0.9 bar. Composite films were peeled off and cut into $10 \times 10 \text{ mm}^2$ samples using a die cutter. These films are measured as ~110 µm by micrometer (micrometer screw gauge).

Oxygen-atom exposure experiments were carried out in low earth orbit (LEO) environment ground-based atomic oxygen effect simulation facility in Beijing University of Aeronautics and Astronautics,¹ under a condition of pressure of 0.15 Pa, filament discharge voltage of 120 V, and filament discharge current of 140 mA. The

S3

oxygen atom is generated by a plasma-type ground-based atomic oxygen effects simulation facility designed by ourselves (*J. Phys. D: Appl. Phys. 2001,34,2308; Acta Aeronautica Et Astronautica Sinica 2000,21,425*). This facility is with the filament discharge and bound of magnetic field. The temperature in the test is low, less than 50 °C. The mass loss of Kapton in the atomic oxygen exposure experiments was used as a criterion to calculate the atomic oxygen flux. The calculation formula is $Ft=\Delta M/(\rho AE_y)$ in which *F* is the effective flow rate of atomic oxygen onto the sample surface and ΔM , ρ , *A*, *t*, *E*_y are mass loss, density, surface area, exposure time, and erosion yield, respectively. *Ft* is the accumulative atomic oxygen flux exerting on the sample surface. For Kapton, *E*_y is equal to ~3.0×10⁻²⁴cm³/atom. In this study, the accumulative atomic oxygen flux was about 4.7×10^{20} atoms/cm², which was approximately equivalent to the accumulative atomic oxygen flux of ~140 days at an orbit of 300 km in LEO.² For each mass fraction of PVA/BNNSs composite films, at least three samples were tested and the mass loss averaged.

Scanning electron microscopy (SEM) images were collected by a LEO 1530VP. Atomic force microscopy (AFM) images were captured with a Multimode 8 AFM (Bruker) in ScanAsyst Air mode. Thermogravimetric (TGA) analysis was performed on a TGA/SDTA851 (Mettler Toledo, USA) at 10°C/min in a nitrogen atmosphere. The mass of samples before and after oxygen-atom exposure was measured using a DT-100 balance with a sensitivity of 0.05 mg. X-ray photoelectron spectroscopy (XPS) was obtained by an ESCALAB-250 spectrometer.

Fig. S1 TGA curves pure PVA and PVA/BNNSs composite powder. The TGA curves of the composites are shifted toward a higher temperature when compared to that of pure PVA, showing the enhancement in thermal stability.

References

- Yi, M.; Zhang, W.; Shen, Z.; Zhang, X.; Zhao, X.; Zheng, Y.; Ma, S., Controllable functionalization and wettability transition of graphene-based films by an atomic oxygen strategy. J. Nanopart. Res. 2013, 15, 1811.
- Gouzman, I.; Girshevitz, O.; Grossman, E.; Eliaz, N.; Sukenik, C. N., Thin Film Oxide Barrier Layers: Protection of Kapton from Space Environment by Liquid Phase Deposition of Titanium Oxide. ACS Appl. Mater. Interfaces 2010, 2 (7), 1835-1843.