Supporting Information

Large-scale production of spherical Y₂O₃:Eu³⁺ phosphor powders with narrow size distribution using a two-step spray drying method

Jung Sang Cho^[a], Kyeong Youl Jung^[b], Mun Young Son^[c], Yun Chan Kang^{*[a]}

- ^[a] Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea
- ^[b] Department of Chemical Engineering, Kongju National University, 1223-24 Cheonan-Daero, Seobuk-gu, Cheonan, Republic of Korea
- ^[c] Department of Chemical Engineering, Konkuk University, 1 Hwayang-dong, Gwangjingu, Seoul 143-701, Republic of Korea

This file includes:

• Schematic diagram and digital photo of spray dryer applied in the preparation of precursor powders.

• TG analysis of the Y_2O_3 :Eu³⁺ precursor powders directly prepared by first-step spray drying.

• Particle size distributions of the Y₂O₃:Eu³⁺ phosphor powders before and after sintering process.

• N_2 adsorption-desorption isotherms measured at 77 K for the Y_2O_3 :Eu³⁺ phosphor powders formed at the various sintering temperatures.

• XRD patterns of the Y_2O_3 :Eu³⁺ phosphor powders formed at the various sintering temperatures.

• Excitation and emission spectra of the Y_2O_3 :Eu³⁺ phosphor powders prepared by spray drying method and the commercial Y_2O_3 :Eu³⁺ product.

• XRD patterns of the (a) first spray dried, and (b) crushed Y_2O_3 :Eu³⁺ phosphor powders.

Figure S1. Schematic diagram and digital photo of spray dryer applied in the preparation of precursor powders.

Figure S2. TG analysis of the Y_2O_3 :Eu³⁺ precursor powders directly prepared by first-step spray drying.

Figure S3. Particle size distributions of the Y_2O_3 :Eu³⁺ phosphor powders before and after sintering process.

Figure S4. N_2 adsorption-desorption isotherms measured at 77 K for the Y_2O_3 :Eu³⁺ phosphor powders formed at the various sintering temperatures.

Figure S5. XRD patterns of the Y_2O_3 :Eu³⁺ phosphor powders formed at the various sintering temperatures.

Figure S6. Excitation and emission spectra of the Y_2O_3 :Eu³⁺ phosphor powders prepared by spray drying method and the commercial Y_2O_3 :Eu³⁺ product.

Figure S7. XRD patterns of the (a) first spray dried, and (b) crushed Y_2O_3 :Eu³⁺ phosphor powders.