# **Supporting Information**

#### *In-situ* generated chiral iron complex as efficient catalyst for

#### enantioselective sulfoxidation using aqueous H<sub>2</sub>O<sub>2</sub> as an oxidant

Prasanta Kumar Bera,<sup>a</sup> Prathibha Kumari,<sup>a, b</sup> Sayed H. R. Abdi,\* <sup>a, b</sup> Noor-ul H. Khan,<sup>a, b</sup>

Rukhsana I. Kureshy,<sup>a, b</sup> P. S. Subramanian, <sup>a, b</sup> Hari C. Bajaj<sup>a, b</sup>

<sup>a</sup> Discipline of Inorganic Materials and Catalysis, CSIR-Central Salt and Marine Chemicals Research Institute (CSMCRI), Council of Scientific & Industrial Research (CSIR), G.B. Marg, Bhavnagar, 364 002, Gujarat, India. <sup>b</sup> Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Salt and Marine Chemicals Research Institute (CSMCRI), Council of Scientific & Industrial Research (CSIR), G.B. Marg, Bhavnagar, 364 002, Gujarat, India. *Tel:* +91-0278-2567760, *Fax:* +91-0278-2566970; *E-mail: shrabdi@csmcri.org* 

#### **Table of Contents**

| 1. | Oxidative kinetic resolution of sulfoxide                         | 2     |
|----|-------------------------------------------------------------------|-------|
| 2. | ESI-MS spectra of the in situ generated complex                   | 2-3   |
| 3. | HRMS spectra of the in situ generated complexes                   | 4     |
| 4. | Screening of benzoic acid derivatives as additive                 | 6     |
| 5. | Characterization data of the sulfoxides                           | 7-9   |
| 6. | <sup>1</sup> H and <sup>13</sup> C-NMR spectra of ligands (L1-L4) | 10-13 |
| 7. | <sup>1</sup> H and <sup>13</sup> C-NMR spectra of sulfoxides      | 14-26 |
| 8. | HPLC chromatogram of sulfoxides                                   | 27-39 |
| 9. | Notes and references                                              | 40    |

#### 1. Oxidative kinetic resolution of sulfoxide

The oxidative kinetic resolution was carried out under the same reaction as mentioned for the asymmetric sulfoxidation taking phenyl methyl sulfoxide as model substrate. The catalyst resolve the racemic sulfoxide with 15% ee after 30% conversion of the starting sulfoxide.



#### 2. ESI-MS spectra of the in situ generated complex



Fig. S1 ESI-MS spectra of the in situ generated complex with 1:1 metal to ligand ratio.



Fig. S2 ESI-MS spectra of the *in situ* generated complex with 2:1 metal to ligand ratio.

# 3. HRMS spectra of the in situ generated complexes

| I Compositio                                                                                             | n Report                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ass Analysis<br>= 50.0 PPM /<br>rediction: Off<br>isotope peaks of                                       | DBE: min = -<br>used for i-FIT                                                                                                                                                                                                                                                                                 | -1.5, max =<br>= 3                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ic Mass, Even Ele<br>(e) evaluated with<br>sed:<br>: 0-46 N: 0-2 (                                       | ectron lons<br>h 10 results with<br>D: 0-5 Al: 0-1                                                                                                                                                                                                                                                             | hin limits (u<br>P: 0-1                                                                                                                                                                                                                                                                                                                                                                                                                                                    | p to 50 close<br>Fe: 0-1 I: C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | est results fo<br>)-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | or each r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nass)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0 (1.508)                                                                                                |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TOF MS ES+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                          |                                                                                                                                                                                                                                                                                                                | FET 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 557<br>••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ۲۰۰۰۰۰۰۰۰۰ m/z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 556.80 556.90                                                                                            | 0 557.00                                                                                                                                                                                                                                                                                                       | 557.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 557.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 557.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 557.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 55.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 557.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 557.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                          | 5.0                                                                                                                                                                                                                                                                                                            | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1.5<br>50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Calc. Mass                                                                                               | mDa                                                                                                                                                                                                                                                                                                            | PPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | i-FIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Formu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ıla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 557.2678<br>557.2622<br>557.2725<br>557.2604<br>557.2595<br>557.2510<br>557.2492<br>557.2483<br>557.2452 | -1.2<br>4.4<br>-5.9<br>6.2<br>7.1<br>15.6<br>17.4<br>18.3<br>21.4                                                                                                                                                                                                                                              | -2.2<br>7.9<br>-10.6<br>11.1<br>12.7<br>28.0<br>31.2<br>32.8<br>38.4                                                                                                                                                                                                                                                                                                                                                                                                       | 8.5<br>7.5<br>10.5<br>5.5<br>8.5<br>7.5<br>5.5<br>8.5<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n/a<br>n/a<br>n/a<br>n/a<br>n/a<br>n/a<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C29<br>C28<br>C29<br>C27<br>C29<br>C29<br>C29<br>C28<br>C30<br>C23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H45<br>H46<br>H43<br>H46<br>H46<br>H46<br>H46<br>H46<br>H46<br>H46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N2<br>N2<br>N2<br>N2<br>05<br>03<br>04<br>N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 05<br>04<br>05<br>02<br>03<br>A1<br>I<br>P<br>05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fe<br>Al Fe<br>Al P<br>I<br>P Fe<br>Fe<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                          | I Compositio<br>ass Analysis<br>= 50.0 PPM /<br>ediction: Off<br>isotope peaks<br>c Mass, Even Ele<br>(e) evaluated witt<br>sed:<br>0-46 N: 0-2<br>0 (1.508)<br>Calc. Mass<br>557.2678<br>557.2678<br>557.2678<br>557.2622<br>557.2622<br>557.2604<br>557.2595<br>557.2510<br>557.2492<br>557.2483<br>557.2452 | I Composition Report<br>ass Analysis<br>= 50.0 PPM / DBE: min = -<br>ediction: Off<br>isotope peaks used for i-FIT<br>c Mass, Even Electron lons<br>(e) evaluated with 10 results with<br>sed:<br>0-46 N: 0-2 O: 0-5 AI: 0-1<br>0 (1.508)<br>(1.508)<br>556.80 556.90 557.00<br>5.0<br>Calc. Mass mDa<br>557.2678 -1.2<br>557.2622 4.4<br>557.2725 -5.9<br>557.2604 6.2<br>557.2595 7.1<br>557.2604 6.2<br>557.2595 7.1<br>557.2492 17.4<br>557.2483 18.3<br>557.2452 21.4 | I Composition Report         ass Analysis         = 50.0 PPM / DBE: min = -1.5, max =         ediction: Off         isotope peaks used for i-FIT = 3         c Mass, Even Electron lons         (e) evaluated with 10 results within limits (used:         .0-46 N: 0-2 O: 0-5 Al: 0-1 P: 0-1         0 (1.508)         556.80 556.90 557.00 557.10         5.0 50.0         Calc. Mass         mDa         PPM         557.2678 -1.2 -2.2         557.2622 4.4 7.9         557.2622 4.4 7.9         557.2604 6.2 11.1         557.2595 7.1 12.7         557.2610 15.6 28.0         557.2492 17.4 31.2         557.2492 17.4 31.2         557.2452 21.4 38.4 | I Composition Report         ass Analysis         = 50.0 PPM / DBE: min = -1.5, max = 50.0         ediction: Off         isotope peaks used for i-FIT = 3         c Mass, Even Electron lons         (e) evaluated with 10 results within limits (up to 50 close sed:         .0-46 N: 0-2 O: 0-5 Al: 0-1 P: 0-1 Fe: 0-1 I: 0         0 (1.508)         556.80       556.90         557.00       557.10         557.2678       -1.2         -1.5       5.0         557.2678       -1.2         -2.2       8.5         557.2622       4.4         7.9       7.5         557.2622       4.4         557.2624       1.1         557.2624       6.2         11.1       5.5         557.2610       15.6         28.0       7.5         557.2610       15.6         28.0       7.5         557.2492       17.4         32.8       8.5         557.2452       21.4 | I Composition Report         ass Analysis         = 50.0 PPM / DBE: min = -1.5, max = 50.0         ediction: Off         isotope peaks used for i-FIT = 3         c Mass, Even Electron lons         (e) evaluated with 10 results within limits (up to 50 closest results for sed:         0-46 N: 0-2 O: 0-5 Al: 0-1 P: 0-1 Fe: 0-1 I: 0-1         0 (1.508)         557.2666         558.80       556.90         557.00       557.10         557.26678         -1.2         -2.2         8.5         -1.5         557.2678         -1.2         -2.2         8.5         -1.5         557.2622         4.4         7.9         7.5         557.2622         4.4         7.9         557.2622         4.4         7.9         557.2622         4.4         7.5         557.2624         6.2         557.255         57.2604         6.2         557.2625         7.1         557.2635         7.1     < | I Composition Report         iss Analysis         = $50.0 \text{ PPM}$ / DBE: min = -1.5, max = $50.0$ ediction: Off         isotope peaks used for i-FIT = 3         c Mass, Even Electron lons         (e) evaluated with 10 results within limits (up to 50 closest results for each r         sed:         0-46       N: 0-2         0:1.508)         557.2666         566.80 $556.90$ 557.00 $557.10$ 557.2666         -11.5         5.0 $50.0$ 557.2678 $-1.2$ $-1.5$ $557.2678$ $-1.2$ $557.2678$ $-1.2$ $557.2622$ $4.4$ $7.9$ $7.5$ $557.2604$ $6.2$ $557.2695$ $7.1$ $557.2695$ $7.1$ $557.2695$ $7.1$ $557.2695$ $7.1$ $557.2955$ $7.1$ $557.2492$ $7.4$ $557.2483$ $18.3$ $32.8$ $8.5$ | I Composition Report<br>ass Analysis<br>= 50.0 PPM / DBE: min = -1.5, max = 50.0<br>ediction: Off<br>isotope peaks used for i-FIT = 3<br>c Mass, Even Electron lons<br>(e) evaluated with 10 results within limits (up to 50 closest results for each mass)<br>sed:<br>0-46 N: 0-2 O: 0-5 AI: 0-1 P: 0-1 Fe: 0-1 I: 0-1<br>0 (1.508)<br>557.2666<br>557.2666<br>557.2666<br>557.2678 -1.2 -2.2 8.5 n/a C29<br>557.2678 -1.2 -2.2 8.5 n/a C29<br>557.2604 6.2 11.1 5.5 n/a C29<br>557.2492 17.4 31.2 5.5 n/a C29<br>557.2492 17. | I Composition Report         ass Analysis<br>= 50.0 PPM / DBE: min = -1.5, max = 50.0<br>ediction: Off<br>isotope peaks used for i-FIT = 3         c Mass, Even Electron Ions<br>(e) evaluated with 10 results within limits (up to 50 closest results for each mass)<br>sed:<br>0-46 N: 0-2 O: 0-5 Al: 0-1 P: 0-1 Fe: 0-1 I: 0-1         0(1.508)       557.2666         -1.5<br>5.0 50.0 557.20 557.30 557.40 557.50         -1.5<br>5.0 50.0 50.0         -1.5<br>5.0 50.0 20.0         Calc. Mass mDa PPM DBE i-FIT Formula         -557.2678 -1.2 -2.2 8.5 n/a C29 H45         -1.5<br>5.7.2622 4.4 7.9 7.5 n/a C28 H46         -55. n/a C29 H43         -55. n/a C29 H43         -61.6 10.5 n/a C29 H43         -61.6 10.5 n/a C29 H43         -61.6 10.5 n/a C29 H43         -72.2 8.5 n/a C29 H45 | I Composition Report<br>ass Analysis<br>= 50.0 PPM / DBE: min = -1.5, max = 50.0<br>ediction: Off<br>isotope peaks used for i-FIT = 3<br>c Mass, Even Electron lons<br>(e) evaluated with 10 results within limits (up to 50 closest results for each mass)<br>sed:<br>0.46 N: 0.2 O: 0.5 Al: 0.1 P: 0.1 Fe: 0.1 I: 0.1<br>0(1.508)<br>557.2666<br>-1.5<br>5.0 50.0 557.00 557.10 557.20 557.30 557.40 557.50 557<br>-1.5<br>5.0 50.0 50.0<br>Calc. Mass mDa PPM DEE i-FIT Formula<br>557.2678 -1.2 -2.2 8.5 n/a C29 H45 N2<br>557.2622 4.4 7.9 7.5 n/a C29 H45 N2<br>557.2624 6.2 11.1 5.5 n/a C29 H45 N2<br>557.2504 6.2 11.1 5.5 n/a C29 H46 N2<br>557.2510 15.6 28.0 7.5 n/a C29 H46 N2<br>557.252 21.4 38.4 1.5 n/a C30 H46 N2 | 1 Composition Report         ass Analysis         = 50.0 PPM / DBE: min = -1.5, max = 50.0         ediction: Off         isotope peaks used for i-FIT = 3         c Mass, Even Electron lons         (e) evaluated with 10 results within limits (up to 50 closest results for each mass)         sed:         0-46 N: 0-2 O: 0-5 Al: 0-1 P: 0-1 Fe: 0-1 I: 0-1         0(1.508)         557.2666         -1.5         5.0       50.0         557.2666         -1.5         5.0       50.0         557.2678       -1.2         -1.2       -5.5         557.2622       4.4         4.4       7.9         7.725       5.7         557.2622       4.4         557.2623       -1.1         557.2624       -1.2         -2.2       8.5       n/a         C29       H45       N2         557.2624       -1.1       5.5         557.2624       -2.2       8.5         557.2624       -2.4       7.9         557.2624       -2.4       7.9         557.2624       -2.4       7.9         557.2624       -2.9       1.0 | 1 Composition Report         ass Analysis<br>= 50.0 PPM / DBE: min = -1.5, max = 50.0<br>ediction: Off<br>isotope peaks used for i-FIT = 3<br>c Mass, Even Electron lons<br>(e) evaluated with 10 results within limits (up to 50 closest results for each mass)<br>sed:<br>0-46 N: 0-2 O: 0-5 Al: 0-1 P: 0-1 Fe: 0-1 I: 0-1         0.46 N: 0-2 O: 0-5 Al: 0-1 P: 0-1 Fe: 0-1 I: 0-1         0(1.508)         1:         557.2666         557.2666         -1.5<br>5.0         50.0         50.0         557.2678         -1.2         557.2678         -1.2         557.2678         -1.2         557.2678         -1.2         557.2678         -1.2         557.2678         -1.2         557.2678         -1.2         557.2678         -1.2         557.2678         -1.2         -2.2         8.5         1.1         557.2695         57.2610         15.6         28.0         7.5       n/a         C29       H46         204       P Fe         557.2675       7.1         12.7       8.5 |

Fig. S3 HRMS spectra of [FeL1(acac)]

#### **Elemental Composition Report**

Single Mass Analysis

Tolerance = 50.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off

Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions

1146 formula(e) evaluated with 23 results within limits (up to 50 closest results for each mass) Elements Used:

C: 0-35 H: 0-52 N: 0-2 O: 0-7 AI: 0-1 P: 0-1 Fe: 0-2 I: 0-1

**TFEDI** 



**Fig. S4** HRMS spectra of  $[Fe_2L1(acac)_2]^+$ 

#### 4. Screening of benzoic acid derivatives as additive

**Table S1.** Screening of benzoic acid derivatives as additive for the enantioselective oxidation of methyl phenyl sulfide with 1/Fe(acac)<sub>3</sub> system<sup>a</sup>

|       | $ \begin{array}{r}       Fe(acac)_{3} (2 \text{ mol}\%) \\       1 (3 \text{ mol}\%), \\       Additive (2 \text{ mol}\%) \\       H_{2}O_{2} (1.5 \text{ equiv.}) \\       DCM (1 \text{ mL}) \end{array} $ | →<br><sup>0</sup><br>S <sup>+</sup> | +                            |                     |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------|---------------------|
| Entry | Additive                                                                                                                                                                                                     | Conversion <sup>b</sup> (%)         | Selectivity <sup>b</sup> (%) | ee <sup>c</sup> (%) |
| 1     | <i>p</i> -OHC <sub>6</sub> H <sub>4</sub> COOH                                                                                                                                                               | 89                                  | 95                           | 83                  |
| 2     | <i>p</i> -OMeC <sub>6</sub> H <sub>4</sub> COOH                                                                                                                                                              | 91                                  | 95                           | 88                  |
| 3     | <i>p</i> -MeC <sub>6</sub> H <sub>4</sub> COOH                                                                                                                                                               | 87                                  | 96                           | 74                  |
| 4     | o-OmeC <sub>6</sub> H <sub>4</sub> COOH                                                                                                                                                                      | 87                                  | 95                           | 81                  |
| 5     | <i>p</i> -NH <sub>2</sub> C <sub>6</sub> H <sub>4</sub> COOH                                                                                                                                                 | 90                                  | 94                           | 87                  |
| 6     | <i>p</i> -OmeC <sub>6</sub> H <sub>4</sub> COONa                                                                                                                                                             | 90                                  | 94                           | 88                  |

<sup>a</sup> Reaction condition: methyl phenyl sulfide (0.25 mmol),  $Fe(acac)_3$  (2 mol%), L1 (3 mol%), additive (2 mol%), aqueous H<sub>2</sub>O<sub>2</sub> (30%, 1.2 equiv.), in organic solvent (1 ml) at 15 °C for 12 h. <sup>b</sup> Conversion and selectivity were calculated by <sup>1</sup>H NMR analysis. <sup>c</sup> Enantiomeric excess were determined by HPLC analysis on a chiral phase Daicel Chiralcel OD column.

#### 5. Characterization data of the sulfoxides

**Phenyl methyl sulfoxide**<sup>1</sup>: Colourless oil; Yield: 86%; ee: 88%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.66-7.64$  (m, 2H), 7.53-7.48 (m, 3H), 2.71 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta = 145.21$ , 130.71, 129.02, 123.14, 43.50; The enantiomeric excess was determined by HPLC analysis. HPLC condition: Daicel Chiralcel OD column, 80:20 Hex/IPA, 0.5 mL/min, 30 °C, 254 nm; t<sub>r</sub> (**R**) = 13.7 min, t<sub>r</sub> (**S**) = 15.4 min.

**4-Fluorophenyl methyl sulfoxide<sup>2</sup>:** Colourless oil; Yield: 76%; ee: 95%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.69-7.66 (m, 2H), 7.25-7.22 (m, 2H), 2.73 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  =165.19, 163.19, 140.99, 125.83, 125.76, 116.67, 116.50, 43.99; The enantiomeric excess was determined by HPLC analysis. HPLC condition: Daicel Chiralcel OD column, 92:08 Hex/IPA, 0.4 mL/min, 30 °C, 254 nm; t<sub>r</sub> (**R**) = 31.9 min, t<sub>r</sub> (**S**) = 33.7 min.

**4-Chlorophenyl methyl sulfoxide**<sup>1</sup>: Colourless oil; Yield: 80%; ee: 95%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.61$  (d, J = 8.5 Hz, 2H), 7.51 (d, J = 8.5 Hz, 2H), 2.73 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta = 144.00$ , 136.90, 129.39, 124.80, 43.74; The enantiomeric excess was determined by HPLC analysis. HPLC condition: Daicel Chiralcel OB column, 80:20 Hex/IPA, 0.7 mL/min, 30 °C, 254 nm; t<sub>r</sub> (**R**) = 11.4 min, t<sub>r</sub> (**S**) = 16.9 min.

**4-Bromophenyl methyl sulfoxide**<sup>1</sup>: White solid; Yield: 79%; ee: 92%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.67$  (d, J = 8.5 Hz, 2H), 7.53 (d, J = 8.5 Hz, 2H), 2.73 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta = 144.81$ , 132.63, 125.21, 43.99; The enantiomeric excess was determined by HPLC analysis. HPLC condition: Daicel Chiralcel OB column, 80:20 Hex/IPA, 0.8 mL/min, 30 °C, 254 nm; t<sub>r</sub> (**R**) = 10.8 min, t<sub>r</sub> (**S**) = 15.3 min.

**4-Nitrophenyl methyl sulfoxide**<sup>1</sup>: White solid; Yield: 69%; ee: 96%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 8.40$  (d, J = 8.5 Hz, 2H), 7.86 (d, J = 8.5 Hz, 2H), 2.82 (s, 3H); <sup>13</sup>C NMR (125

MHz, CDCl<sub>3</sub>):  $\delta$  = 153.29, 149.54, 124.76, 124.55, 43.92; The enantiomeric excess was determined by HPLC analysis. HPLC condition: Daicel Chiralcel OJ column, 65:35 Hex/IPA, 0.5 mL/min, 30 °C, 254 nm; t<sub>r</sub> (**R**) = 23.9 min, t<sub>r</sub> (**S**) = 27.4 min.

**4-Methylphenyl methyl sulfoxide**<sup>1</sup>: White solid; Yield: 86%; ee: 87%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.54$  (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8 Hz, 2H), 2.70 (s, 3H), 2.41 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta = 142.27$ , 141.37, 129.90, 123.41, 43.79, 21.25; The enantiomeric excess was determined by HPLC analysis. HPLC condition: Daicel Chiralcel OD column, 94:06 Hex/IPA, 0.5 mL/min, 30 °C, 254 nm; t<sub>r</sub> (**R**) = 33.5 min, t<sub>r</sub> (**S**) = 36.4 min.

**4-Methoxyphenyl methyl sulfoxide**<sup>1</sup>: Yellow oil; Yield: 86%; ee: 85%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.45 (d, J = 7.8 Hz, 1H), 6.88 (d, J = 7.6 Hz, 1H), 3.70 (s, 3H), 2.56 (s, 3H); <sup>13</sup>C NMR (50 MHz, CDCl<sub>3</sub>):  $\delta$  = 161.52, 136.02, 125.04, 114.43, 55.09, 34.44; The enantiomeric excess was determined by HPLC analysis. HPLC condition: Daicel Chiralcel OD column, 90:10 Hex/IPA, 0.7 mL/min, 30 °C, 254 nm; t<sub>r</sub> (**R**) = 21.7 min, t<sub>r</sub> (**S**) = 23.3 min.

**3-Chlorophenyl methyl sulfoxide<sup>3</sup>:** Colourless oil; Yield: 77%; ee: 98%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.67$  (s, 1H), 7.52-7.49 (m, 1H), 7.48-7.46(m, 2H), 2.75 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta = 147.65$ , 135.54, 131.08, 130.53, 123.50, 121.56, 43.85; The enantiomeric excess was determined by HPLC analysis. HPLC condition: Daicel Chiralcel OB column, 90:10 Hex/IPA, 1.0 mL/min, 30 °C, 254 nm; t<sub>r</sub> (**R**) = 12.5 min, t<sub>r</sub> (**S**) = 18.8 min.

**3-Bromophenyl methyl sulfoxide**<sup>4</sup>: Colorless oil; Yield: 78%; ee: 92%; <sup>1</sup>H NMR (200 MHz, CDCl<sub>3</sub>):  $\delta = 7.82$  (s, 1H), 7.65-7.53 (m, 2H), 7.47-7.32 (m, 1H), 2.75 (s, 3H); <sup>13</sup>C NMR (50 MHz, CDCl<sub>3</sub>):  $\delta = 147.91$ , 134.06, 130.83, 126.41, 123.53, 122.08, 43.97; The enantiomeric excess was determined by HPLC analysis. HPLC condition: Daicel Chiralcel OB column, 80:20 Hex/IPA, 1.0 mL/min, 30 °C, 254 nm; t<sub>r</sub> (**R**) = 8.67 min, t<sub>r</sub> (**S**) = 13.9 min.

**2-Chlorophenyl methyl sulfoxide**<sup>3</sup>:Colourless oil; Yield: 76%; ee: 91%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.96$  (d, J = 8 Hz, 1H), 7.54 (t, J = 7.5 Hz, 1H), 7.45 (t, J = 7.5 Hz, 1H), 7.40 (d, J = 8 Hz, 1H), 2.83 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta = 143.63$ , 132.06, 129.84, 128.23, 125.36, 41.72; The enantiomeric excess was determined by HPLC analysis. HPLC condition: Daicel Chiralcel AD-H column, 90:10 Hex/IPA, 0.5 mL/min, 30 °C, 254 nm; t<sub>r</sub> ( $\mathbf{R}$ ) = 17.9 min, t<sub>r</sub> ( $\mathbf{S}$ ) = 21.7 min.

**2-Bromophenyl methyl sulfoxide**<sup>1</sup>: Yellow oil; Yield: 73%; ee: 91%; <sup>1</sup>H NMR (200 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.98-7.93 (m, 1H), 7.62-7.49 (m, 2H), 7.42-7.34 (m, 1H), 2.83 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  = 145.29, 132.91, 132.26, 128.73, 125.69, 118.40, 41.84; The enantiomeric excess was determined by HPLC analysis. HPLC condition: Daicel Chiralcel AD-H column, 90:10 Hex/IPA, 0.5 mL/min, 30 °C, 254 nm; t<sub>r</sub> (**R**) = 15.2 min, t<sub>r</sub> (**S**) = 17.8 min.

Ethyl phenyl sulfoxide<sup>1</sup>: Colourless oil; Yield: 87%; ee: 85%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.62-7.60$  (m, 2H), 7.54-7.49 (m, 3H), 2.95-2.87 (m, 1H), 2.81-2.74 (m, 1H), 1.20 (t, J =7.5, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta = 143.20$ , 130.94, 129.14, 124.17, 50.24, 5.95; The enantiomeric excess was determined by HPLC analysis. HPLC condition: Daicel Chiralcel OD column, 90:10 Hex/IPA, 0.5 mL/min, 30 °C, 254 nm; t<sub>r</sub> (**R**) = 17.6 min, t<sub>r</sub> (**S**) = 20.9 min.

**Benzyl phenyl sulfoxide**<sup>1</sup>: White solid; Yield: 85%; ee: 85%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.46-7.37 (m, 5H), 7.29-7.23 (m, 3H), 6.98 (m, 2H), 4.12 (d, *J* = 12.5 Hz, 1H), 4.00 (d, *J* = 12.5 Hz, 1H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  = 142.63, 131.16, 130.33, 129.06, 128.83, 128.42, 128.23, 124.43, 63.52; The enantiomeric excess was determined by HPLC analysis. HPLC condition: Daicel Chiralcel OD column, 90:10 Hex/IPA, 0.5 mL/min, 30 °C, 254 nm; t<sub>r</sub> (**R**) = 17.6 min, t<sub>r</sub> (**S**) = 20.9 min.

## 6. <sup>1</sup>H and <sup>13</sup>C-NMR spectra of ligands (L1-L4)

#### Ligand L1















## 7. <sup>1</sup>H and <sup>13</sup>C-NMR spectra of sulfoxides

## Phenyl methyl sulfoxide



## 4-Fluorophenyl methyl sulfoxide



## 4-Chlorophenyl methyl sulfoxide



# 4-Bromophenyl methyl sulfoxide



4-Nitrophenyl methyl sulfoxide



4-Methylphenyl methyl sulfoxide



ppm (t1)

4-Methoxyphenyl methyl sulfoxide



## **3-Chlorophenyl methyl sulfoxide**



## **3-Bromophenyl methyl sulfoxide**



## 2-Chlorophenyl methyl sulfoxide



## 2-Bromophenyl methyl sulfoxide



## Ethyl phenyl sulfoxide



## Benzyl phenyl sulfoxide



#### 8. HPLC chromatogram of sulfoxides

#### Phenyl methyl sulfoxide



| Peak# | Ret. Time | Area    | Peak Start | Peak End | Area%   |
|-------|-----------|---------|------------|----------|---------|
| 1     | 13.702    | 119036  | 13.365     | 14.133   | 5.8472  |
| 2     | 15.410    | 1916761 | 15.008     | 16.747   | 94.1528 |

## 4-Methylphenyl methyl sulfoxide



| Peak# | Ret. Time | Area     | Peak Start | Peak End | Area%   |
|-------|-----------|----------|------------|----------|---------|
| 1     | 33.506    | 713478   | 32.768     | 34.528   | 6.5657  |
| 2     | 36.406    | 10153346 | 35.445     | 40.181   | 93.4343 |

#### 4-Fluorophenyl methyl sulfoxide





## 4-Chlorophenyl methyl sulfoxide

| Peak# | Ret. Time | Area      | Peak Start | Peak End | Area%   |
|-------|-----------|-----------|------------|----------|---------|
| 1     | 11.512    | 137217214 | 9.323      | 13.600   | 49.1353 |
| 2     | 16.903    | 142046813 | 13.653     | 21.259   | 50.8647 |



| Peak# | Ret. Time | Area     | Peak Start | Peak End | Area%   |
|-------|-----------|----------|------------|----------|---------|
| 1     | 11.447    | 31089574 | 9.099      | 14.251   | 97.3501 |
| 2     | 16.941    | 846271   | 15.712     | 18.944   | 2.6499  |

# 4-Bromophenyl methyl sulfoxide



| Peak# | Ret. Time | Area     | Peak Start | Peak End | Area%   |
|-------|-----------|----------|------------|----------|---------|
| 1     | 10.683    | 30273114 | 8.555      | 12.459   | 49.5516 |
| 2     | 15.087    | 30821033 | 12.501     | 17.717   | 50.4484 |



| Peak# | Ret. Time | Area     | Peak Start | Peak End | Area%   |
|-------|-----------|----------|------------|----------|---------|
| 1     | 10.796    | 34015374 | 8.533      | 13.440   | 97.1864 |
| 2     | 15.274    | 984774   | 14.101     | 17.579   | 2.8136  |

## 4-Nitrophenyl methyl sulfoxide





| Peak# | Ret. Time | Area     | Peak Start | Peak End | Area%   |
|-------|-----------|----------|------------|----------|---------|
| 1     | 23.965    | 597614   | 23.285     | 25.184   | 2.1265  |
| 2     | 27.420    | 27505503 | 26.336     | 32.608   | 97.8735 |

# 4-Methoxyphenyl methyl sulfoxide



| Peak# | Ret. Time | Area     | Peak Start | Peak End | Area%   |
|-------|-----------|----------|------------|----------|---------|
| 1     | 21.655    | 34179408 | 21.077     | 22.795   | 51.4667 |
| 2     | 23.268    | 32231251 | 22.816     | 25.120   | 48.5333 |



| Peak# | Ret. Time | Area     | Peak Start | Peak End | Area%   |
|-------|-----------|----------|------------|----------|---------|
| 1     | 21.725    | 947437   | 21.109     | 22.592   | 7.5712  |
| 2     | 23.283    | 11566286 | 22.667     | 25.472   | 92.4288 |

## 3-Chlorophenyl methyl sulfoxide





| геак# | Ket. Time | Alea     | Feak Start | Feak Ellu | Alea70  |
|-------|-----------|----------|------------|-----------|---------|
| 1     | 12.509    | 11177935 | 9.899      | 15.125    | 98.2256 |
| 2     | 18.832    | 201929   | 17.824     | 20.416    | 1.7744  |

## **3-Bromophenyl methyl sulfoxide**



| Peak# | Ret. Time | Area     | Peak Start | Peak End | Area%   |
|-------|-----------|----------|------------|----------|---------|
| 1     | 8.667     | 28183869 | 6.709      | 10.763   | 96.9872 |
| 2     | 13.881    | 875488   | 12.565     | 15.904   | 3.0128  |

# 2-Chlorophenyl methyl sulfoxide



| Peak# | Ret. Time | Area     | Peak Start | Peak End | Area%   |
|-------|-----------|----------|------------|----------|---------|
| 1     | 17.035    | 19936115 | 16.512     | 17.653   | 49.3216 |
| 2     | 20.172    | 20484572 | 19.691     | 20.789   | 50.6784 |



| Peak# | Ret. Time | Area    | Peak Start | Peak End | Area%   |
|-------|-----------|---------|------------|----------|---------|
| 1     | 17.866    | 2240487 | 17.312     | 20.011   | 95.7105 |
| 2     | 21.666    | 100414  | 21.131     | 22.325   | 4.2895  |

# 2-Bromophenyl methyl sulfoxide



| Peak# | Ret. Time | Area     | Peak Start | Peak End | Area%   |
|-------|-----------|----------|------------|----------|---------|
| 1     | 15.528    | 19914903 | 15.029     | 16.459   | 51.0112 |
| 2     | 17.992    | 19125317 | 17.515     | 18.741   | 48.9888 |



| Peak# | Ret. Time | Area    | Peak Start | Peak End | Area%   |
|-------|-----------|---------|------------|----------|---------|
| 1     | 15.189    | 2322010 | 14.741     | 16.448   | 94.8646 |
| 2     | 17.787    | 125699  | 17.365     | 18.379   | 5.1354  |

# Ethyl phenyl sulfoxide



| Peak# | Ret. Time | Area     | Peak Start | Peak End | Area%   |
|-------|-----------|----------|------------|----------|---------|
| 1     | 19.374    | 17333087 | 18.741     | 21.269   | 50.3180 |
| 2     | 23.304    | 17114006 | 22.688     | 24.896   | 49.6820 |



| Peak# | Ret. Time | Area     | Peak Start | Peak End | Area%   |
|-------|-----------|----------|------------|----------|---------|
| 1     | 17.636    | 919374   | 17.205     | 18.763   | 7.5070  |
| 2     | 20.987    | 11327478 | 20.384     | 23.413   | 92.4930 |

## Benzyl phenyl sulfide





| Peak# | Ret. Time | Area     | Peak Start | Peak End | Area%   |
|-------|-----------|----------|------------|----------|---------|
| 1     | 23.603    | 6841224  | 22.901     | 25.429   | 12.3411 |
| 2     | 27.715    | 48593255 | 26.805     | 31.605   | 87.658  |

#### 9. Notes and references

- 1 J. Legros, C. Bolm, Chem. Eur. J., 2005, 11, 1086–1092.
- 2 J. Sun, C. Zhu, Z. Dai, M. Yang, Y. Pan, H. Hu, J. Org. Chem. 2004, 69, 8500-8503.
- 3 S. Liaoa, B. List, Adv. Synth. Catal., 2012, **354**, 2363–2367.
- 4 T. Yamaguchi, K. Matsumoto, B. Saito, T. Katsuki, *Angew. Chem. Int. Ed.*, 2007, **46**, 4729–4731.