Supplementary Information

Copper incorporated $Cu_x Mo_6 S_8$ ($x \ge 1$) Chevrel phase cathode materials synthesized by chemical intercalation process for rechargeable magnesium batteries

Sang-Gil Woo^a, Jong-Yeol Yoo^a, Woosuk Cho^a, Min-Sik Park^a, Ki Jae Kim^a, Jae-Hun Kim^b, Jeom-Soo Kim^{c,*}, Young-Jun Kim^{a,*}

^aAdvanced Batteries Research Center, Korea Electronics Technology Institute, Seongnam, Gyeonggi 463-816, Republic of Korea

^bSchool of Advanced Materials Engineering, Kookmin University, Seoul 136-702, Republic of Korea

^cDepartment of Chemical Engineering, Dong-A University, Busan 604-714, Republic of Korea

Fig. S1 EDS elemental mapping of product stored for 36 h at 80 °C: (a) SEM image, (b) Mo $L\alpha 1$, (c) S K $\alpha 1$, and (d) Cu K $\alpha 1$.

Fig. S2 FESEM images and PSA results for (a) powder before leaching and (b) powder after being fully leached.

Fig. S3 Voltage profiles of unleached powder ($Cu_2Mo_6S_8$) at a constant current of 6 mA g⁻¹ (0.05C) during first discharge/charge and subsequent discharge.