Supporting Information

Solvent-dependent assemblies, structure diversities and magnetic properties of two homochiral Co(II)/Na(I) coordination polymers

Qipeng Li,^{a,b} Xiang Jiang,^c and Shaowu Du*a

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
^b University of Chinese Academy of Sciences, Beijing 100039, PR China
^c Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China

1

<i>S</i> -1						
Co1—O4	2.069 (2)	Na1—O1	2.659 (3)			
Co1—O7	2.065 (2)	Na1—O7 ⁱ	2.697 (4)			
Co101	2.089 (2)	Na1—O2 ⁱⁱ	2.828 (4)			
Co1—O6	2.087 (2)	O2—Na1 ⁱⁱⁱ	2.828 (4)			
Co1—O5	2.114 (2)	O7—Na1 ^{iv}	2.697 (4)			
Co1—N1	2.165 (3)					
O4—Co1—O7	179.04 (11)	C2—O1—Co1	116.2 (2)			
O4—Co1—O1	91.79 (11)	C2—O1—Na1	126.1 (2)			
O7—Co1—O1	87.81 (10)	Co1—O1—Na1	116.38 (13)			
O4—Co1—O6	89.98 (10)	C2—O2—Na1 ⁱⁱⁱ	110.0 (2)			
O7—Co1—O6	89.33 (11)	C4—O4—Co1	116.7 (2)			
O1—Co1—O6	109.42 (10)	C6—O5—Co1	113.6 (2)			
O4—Co1—O5	92.88 (11)	Co1—O7—Na1 ^{iv}	122.49 (12)			
O7—Co1—O5	87.81 (10)	O5—Co1—N1	79.83 (10)			
01—Co1—O5	157.16 (10)	O1—Na1—O7 ⁱ	122.76 (13)			
O6—Co1—O5	92.93 (10)	O1—Na1—O2 ⁱⁱ	101.00 (12)			
O4—Co1—N1	81.29 (9)	O7 ⁱ —Na1—O2 ⁱⁱ	114.90 (14)			
O7—Co1—N1	99.49 (11)	C3—N1—Co1	108.06 (19)			
O1—Co1—N1	78.82 (10)	C1—N1—Co1	106.05 (19)			
O6—Co1—N1	168.29 (10)	C5—N1—Co1	103.8 (2)			
Symmetry codes: (i) x-1, y, z; (ii) -x, y+1/2, -z+3/2; (iii) -x, y-1/2, -z+3/2; (iv) x+1, y, z.						

Table S1 Selected bond lengths (Å) and angles (°) for S-1 and S-2

<i>S</i> -2						
Co1—O1	2.050 (2)	Na1—O3	2.625 (4)			

Co1—O4 ⁱ	2.075 (2)	Na1—O5 ⁱⁱ	2.722 (4)
Co1—O2	2.090 (2)	Na1—O4 ⁱⁱⁱ	2.901 (4)
Co1—O3	2.095 (2)	O4—Co1 ^{iv}	2.075 (2)
Co1—O6	2.151 (2)	O4—Na1 ^v	2.901 (4)
Co1—N1	2.169 (3)	O5—Na1 ^{vi}	2.722 (4)
O1—Co1—O4 ⁱ	93.82 (9)	C1—N1—Co1	107.0 (2)
O1—Co1—O2	95.28 (10)	C6—N1—Co1	105.06 (19)
O4 ⁱ —Co1—O2	96.63 (9)	C3—N1—Co1	105.75 (19)
O1—Co1—O3	89.63 (10)	C2	116.1 (2)
O4 ⁱ —Co1—O3	104.17 (9)	C9—O2—Co1	115.7 (2)
O2—Co1—O3	158.26 (9)	C4—O3—Co1	111.9 (2)
01—Co1—O6	176.52 (11)	C4—O3—Na1	103.9 (2)
O4 ⁱ —Co1—O6	86.07 (10)	Co1—O3—Na1	120.75 (12)
O2—Co1—O6	88.19 (10)	C9—O4—Co1 ^{iv}	124.7 (2)
O3—Co1—O6	87.02 (10)	C9—O4—Na1 ^v	115.4 (2)
01—Co1—N1	81.57 (9)	Co1 ^{iv} —O4—Na1 ^v	102.87 (11)
O4 ⁱ —Co1—N1	172.88 (10)	C2—O5—Na1vi	113.1 (2)
O2—Co1—N1	78.49 (9)	O3—Na1—O5 ⁱⁱ	116.90 (13)
O3—Co1—N1	81.32 (10)	O3—Na1—O4 ⁱⁱⁱ	130.17 (13)
O6—Co1—N1	98.87 (10)	O5 ⁱⁱ —Na1—O4 ⁱⁱⁱ	105.46 (12)
Symmetry codes: (i) $-x+2$ y+1/2, -z+1/2; (v) $x, y+1, z$	2, $y-1/2$, $-z+1/2$; (ii x; (vi) $x+1/2$, $-y+1/2$,) $x-1/2$, $-y+1/2$, $-z$; (iii) :	x, y-1, z; (iv) -x+2,

Table S2 Bond lengths (A) and angles (*) of hydrogen bonds for S-1				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O6-H6C···O3 ⁱⁱⁱ	0.90	2.25	2.7993	119
O6-H6D····O2 ⁱⁱ	0.90	2.16	2.7498	122
O7-H7D····O3 ⁱ	0.90	2.14	2.7148	121
Symmetry codes: (i) 1/2-x,-y,1/2+z; (ii) -x,1/2+y,3/2-z; (iii) 1/2+x,1/2-y,1-z.				

Table S2 Bond lengths (Å) and angles (°) of hydrogen bonds for S-1

Fig. S1The solid-state CD spectra of *S*-1 and *S*-2.

Fig. S2X-ray powder diffraction (XRPD) patterns of S-1 and S-2

Fig. S3View of the TGA curves of S-1 and S-2

For **S-1**:

$$\hat{H} = D\left[\hat{S}_{z}^{2} - \frac{1}{3}S(S+1)\right] + g_{\parallel}\beta H_{z}S_{z} + g_{\perp}\beta(H_{x}S_{x} + H_{y}S_{y})$$

The expressions of the molar magnetic susceptibility (χ_m) can be derived from the above Hamiltonian, where N is Avogadro's number, β is the Bohr magneton, *k* is Boltzmann's constant, *g* is the Landé g-factor and *D* is the zero-field splitting.

$$\chi_{\parallel} = \frac{Ng_{\parallel}^{2}\beta^{2}}{kT} \times \frac{1+9e^{-2D/kT}}{4(1+e^{-2D/kT})}$$
$$\chi_{\perp} = \frac{Ng_{\perp}^{2}\beta^{2}}{kT} \times \frac{4+(3kT/D)(1-e^{-2D/kT})}{4(1+e^{-2D/kT})}$$
$$\chi_{\rm m} = \frac{\chi_{\parallel}+2\chi_{\perp}}{3}$$