A simple one-pot synthesis of highly fluorescent nitrogen-doped grapheme quantum dots for the detection of $\mathrm{Cr}(\mathrm{VI})$ in aqueous media

Fei Cai, ${ }^{a}$ Xidong Liu, ${ }^{\text {b }}$ Shuang Liu, ${ }^{\text {b }}$ Hong Liu, ${ }^{\text {c }}$ Yuming Huang* ${ }^{\text {a }}$

[^0]Supplementary Material (ESI) for RSC Advances
This journal is (c) The Royal Society of Chemistry 2014
Table S1. QY of the as-synthesized N-GQDs

Sample	Integrated emission intensity (I)	Abs at 360 nm wavelength (A)	Refractive index of solvent (n)	Quantum Yield $(\%)$
Quinine sulfate	3200	0.045	1.33	57.7
N-GQDs	732	0.032	1.33	18.6
GQDs	104	0.035	1.33	2.4

Table S2. Relative fluorescence intensities (F / F_{0} at 430 nm) of the N-GQDs solution after addition of some organic compounds and polymers.

The tested organic substances and polymers	Reported concentration	Ref.	Selected concentration	$F / F_{0}{ }^{*}$ $(\%$, mean $\pm \mathrm{SD})$
Acetic acid	$13.01 \mathrm{mg} \mathrm{L}^{-1}$	$[1]$	$50 \mathrm{mg} \mathrm{L}^{-1}$	101.14 ± 0.31
Propionic acid	$1.72 \mathrm{mg} \mathrm{L}^{-1}$	$[1]$	$10 \mathrm{mg} \mathrm{L}^{-1}$	99.44 ± 2.09
n-butyric acid	$2.71 \mathrm{mg} \mathrm{L}^{-1}$	$[1]$	$10 \mathrm{mg} \mathrm{L}^{-1}$	102.03 ± 1.53
Isobutyric acid	$1.25 \mathrm{mg} \mathrm{L}^{-1}$	$[1]$	$10 \mathrm{mg} \mathrm{L}^{-1}$	103.02 ± 0.25
valeric acid	$\mathrm{n} . \mathrm{d}$	$[1]$	$10 \mathrm{mg} \mathrm{L}^{-1}$	99.54 ± 0.86
Phenol	$8.43 \mu \mathrm{~g} \mathrm{~L}^{-1}$	$[1]$	$10 \mu \mathrm{~L} \mathrm{~L}^{-1}$	99.13 ± 1.40
Humic acid	$3.5 \mathrm{mg} \mathrm{L}^{-1}$	$[2]$	$5 \mathrm{mg} \mathrm{L}^{-1}$	96.14 ± 0.23
2,4-dinitrophenol	$0.2-6 \mu \mathrm{~g} \mathrm{~L}^{-1}$	$[3]$	$10 \mu \mathrm{~L} \mathrm{~L}$	96.27 ± 0.59
Pyrrole	$/$	$/$	0.01 M	98.58 ± 3.24
Pyrrole	$/$	$/$	0.03 M	91.51 ± 1.18
Pyrrole	$/$	$/$	0.05 M	82.94 ± 4.48
Chitosan	$/$	$/$	$0.01 \%(\mathrm{w} / \mathrm{w})$	97.72 ± 0.73
Chitosan	$/$	$/$	$0.03 \%(\mathrm{w} / \mathrm{w})$	96.44 ± 1.67
Chitosan	$/$	$/$	$0.05 \%(\mathrm{w} / \mathrm{w})$	86.83 ± 1.39

${ }^{*} F_{0}$ and F are the fluorescence intensities of N-GQDs in the absence and presnce of the tested substances, respectively.

References

1. M. Huang, Y. Li and G. Gu, Desalination, 2010, 262, 36-42.
2. L. Li, Y. Huang, Y. Wang, W. Wang, Anal. Chim. Acta, 2009, 631, 182-188.
3. E. Pocurull, R.M. Marce, F. Borrull, J.L. Bernal, L. Toribio, M.L. Serna, J. Chromatogr. A, 1996, 755, 67-74.

Supplementary Material (ESI) for RSC Advances
This journal is (c) The Royal Society of Chemistry 2014

Figure S1. The photographs of $52 \mathrm{mg} \mathrm{L}^{-1} \mathrm{~N}-\mathrm{GQGs}$ without (left) and with (right) an irradiation of 365 nm UV light.

Figure S2. The photograph of the as-prepared products from different molar ratios of ammonia to CA with an irradiation of 365 nm UV light. The products were prepared by hydrothermal reaction of different molar ratios of ammonia to CA at $200^{\circ} \mathrm{C}$ for 10
h. The molar ratios of ammonia to CA for 1 to 9 in the photograph are $0: 1,1: 1.5,1: 3$, $1: 5,1: 8,1.2: 1,3: 1,6: 1$, and $12: 1$, respectively.

Supplementary Material (ESI) for RSC Advances
This journal is (c) The Royal Society of Chemistry 2014

Figure S3. FT-IR spectra of GQDs and N-GQGs.

Figure S4. Variation of the fluorescence intensity of $52 \mathrm{mg} \mathrm{L}^{-1} \mathrm{~N}$-GQGs with time.

Supplementary Material (ESI) for RSC Advances
This journal is (c) The Royal Society of Chemistry 2014

Figure S5. Effect of NaCl concentration on the fluorescence intensity of $52 \mathrm{mg} \mathrm{L}^{-1}$
N-GQGs. Error bars represent one standard deviation for three measurements.

Figure S6. Effect of different buffer system $(\mathrm{pH}=7.4)$ on the FL response of N-GQDs.

Figure S7. Concentrations of $\mathrm{Cr}(\mathrm{III})$ and $\mathrm{Cr}(\mathrm{VI})$ at different initial pH values after reaction between $\mathrm{N}-\mathrm{GQDs}$ and $\mathrm{Cr}(\mathrm{VI})$.

Figure S8. Kinetics of reactions between $\mathrm{N}-\mathrm{GQDs}$ and $\mathrm{Cr}(\mathrm{VI})$.

Figure S9. Effect of N-GQDs concentration on the fluorescence intensity in the absence and presence of $140 \mu \mathrm{M} \mathrm{Cr}(\mathrm{VI})$. Error bars represent one standard deviation for three measurements.

Supplementary Material (ESI) for RSC Advances
This journal is (c) The Royal Society of Chemistry 2014

Figure S10. Relative fluorescence intensities (F / F_{0} at 430 nm) of the GQDs and N GQDs solutions after addition of $140 \mu \mathrm{M} \mathrm{Cr}(\mathrm{VI})$ and various other ions at 5 to 1000
$\mu \mathrm{M}$. The error bars denote standard deviations based on three independent measurements.

[^0]: ${ }^{a}$ Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education; College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
 ${ }^{b}$ College of Materials and Chemical Engineering, Chongqing University of Arts and
 Sciences, Chongqing 402160, PR China
 ${ }^{c}$ Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122, PR China

