Supplementary Information

Control of Cholesterol homeostasis by Entero-hepatic bile transport – Role of feedback mechanisms

Shekhar Mishra[#], Pramod R. Somvanshi[#], K. V. Venkatesh^{*}

*Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, INDIA. Fax: +91-22-2572 6895; Tel: +91-22-2572 7223; E-mail: venks@iitb.ac.in

The model details are presented below. The model equations for the network shown in Fig 1 (and Fig S1) are also presented below.

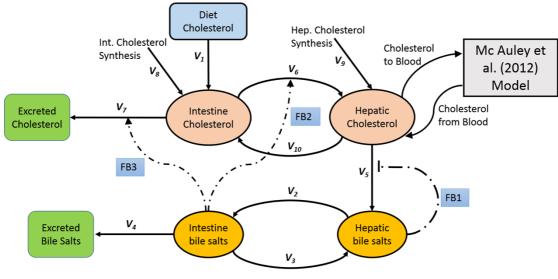


Figure S1

Parameters description for cholesterol model

 $MW_{chol} = 386.65 \, g/mol;$

 $MW_{chol-est} = 386.65 \ g/mol;$

 $MW_{bile} = 430.6 g/mol;$

 $Vol_{L} = 1.5 L;$

 $Vol_I = 1.9 L;$

 $Vol_P = 25 L;$

VC = 10;

Time = 1440 min;

Parameters	Rate Description	Values	Units
k1	Diet absorption in to the intestine	$\frac{1}{Time}$	min ⁻¹
k2	Transport of bile salts from liver to intestine	$\frac{6.0}{Time}$	min ⁻¹
k3	Transport of bile salts from intestine to liver	$\frac{4.29}{Time}$	min ⁻¹

[#] SM and PRS contributed equally to this work.

		0.856	min^{-1}
k4	Excretion of bile salts from intestine	Time	
k5	Synthesis of hepatic bile salts from hepatic free cholesterol	$\frac{2.66}{MW_{bile} * Vol_L * Ti}$	mM/min
k6	Intestinal cholesterol absorption (from intestine to liver)	(5.286 * 10 ⁻⁴) * 1	$mM^{-1}min^{-1}$
k7	Intestinal cholesterol excretion	(5.286 * 10 ⁻⁴) * I	$mM^{-1}min^{-1}$
Kdc	Km value for Diet absorption	$\frac{304}{MW_{chol} * Vol_I}$	mM
Kbs1	Km value for hepatic bile synthesis (substrate)	103.45	mM
Kbs2	Km value for hepatic bile synthesis (regulation)	0.62	mM
nbs	Cooperativity for regulation in hepatic bile synthesis	2	-
Kic1	Km value for intestinal cholesterol absorption (regulation)	2 * 0.571	mM
Kic2	Km value for intestinal cholesterol absorption (substrate)	2 * 4.28	mM
nic1	Cooperativity for regulation in intestinal cholesterol absorption	2.5	_
nic2	Cooperativity for substrate kinetics in intestinal cholesterol absorption	1	_
Kbe	Km value for intestinal bile excretion	0.571	mM
ICS _{max}	Vmax for intestinal cholesterol synthesis	$\frac{10^2}{MW_{chol} * Vol_I * Tolerand}$	mM/min
IC _t	Km for intestinal cholesterol synthesis	$\frac{3.12*10^3}{MW_{chol}*Vol_I}$	mM
IS	Cooperativity for intestinal cholesterol synthesis	5	_
HCS _{max}	Vmax for hepatic cholesterol synthesis	$\frac{5*10^2}{MW_{chol}*Vol_L*T}$	
HC _t	Km for hepatic cholesterol synthesis	$\frac{9.3925 * 10^4}{MW_{chol} * Vol_L}$	mM
HS	Cooperativity for hepatic cholesterol synthesis	5	_
BCR _{max}	Vmax for biliary cholesterol release	$\frac{2*10^3}{MW_{chol}*Vol_L*T}$	mM/min
BCR _t	Km for biliary cholesterol release	$\frac{5.5326 * 10^4}{MW_{chol} * Vol_L}$	mM
BS	Cooperativity for biliary cholesterol release	5	-
Diet chol	Dietary cholesterol	$\frac{304}{MW_{chol}*Vol_I}$	mM

Description Determination			
Reaction Rate Description Rate Expression	Rate Expression	Description	

V ₁ : Diet_absp	Rate of absorption of cholesterol from diet	k1 * DC
V ₂ : BS_release	Rate of bile salt release from liver to intestine	k2 * HBS
V ₃ : HBS_return	Rate of bile salt transport from intestine to liver	k3 * IBS
$V_4: BS_excr$	Rate of bile salt excretion from the intestine	$(k4*0.571*2)*\left(\frac{IBS}{Kbe + IBS}\right)*Eff$
$V_5: BS_synth$		$\left(k5 * 2 * \frac{103.45}{0.62} * \left(\frac{0.62^{nbs} + Kbs2^{nbs}}{Kbs2^{nbs}}\right)\right)$
V ₆ : Int_chol_absp	Rate of cholesterol absorption from intestine into liver	$(k6*0.571*4.28)* \left(\frac{0.571^{nic1} + Kic}{0.571^{nic1}}\right)$
		$*\left(\frac{IBS^{nic1}}{IBS^{nic1} + Kic1^{nic1}}\right)*\left(\frac{IC^{r}}{IC^{r}}\right)$ $(k7*0.571*2)*\left(\frac{IBS}{IBS + Kie}\right)*IC*$
V_7 : Int_chol_excr	Rate of excretion of cholesterol from the intestine	$(k7*0.571*2)*\left(\frac{IBS}{IBS+Kie}\right)*IC*$
V ₈ : IC_synth	Rate of cholesterol biosynthesis in the intestine	$\frac{ICS_{max}}{1 + \left(\frac{IC}{IC}\right)^{IS}}$
V ₉ : HC_synth	Rate of cholesterol biosynthesis in the liver	$\frac{HCS_{max}}{1 + \left(\frac{HFC}{HC_t}\right)^{HS}}$
V ₁₀ : BC_release	Rate of cholesterol release from the liver into the bile	$\frac{BCR_{max}}{1 + \left(\frac{BCR_t}{HFC}\right)^{BS}}$
HDLC_synth	Synthesis of HDLC from nascent HDL and peripheral cholesterol	Referred from Mc Auley et al.
Hep_VLDLC_synth	Rate of synthesis of VLDLC in the liver and secretion into the blood stream	Referred from Mc Auley et al.
HCE_to_HFC	Rate of hydrolysis of cholesterol ester in liver	Referred from Mc Auley et al.
HFC_to_HCE	Rate of esterification of cholesterol in liver	Referred from Mc Auley et al.
Hep_IDLC_removal	Rate of IDLC uptake by the liver	Referred from Mc Auley et al.
Hep_VLDLC_removal	Rate of VLDLC uptake by the liver	Referred from Mc Auley et al.
Hep_up_LDLC	Rate of LDLC uptake by liver through receptors	Referred from Mc Auley et al.
Hep_up_LDLC_indep	Rate of receptor-independent LDLC uptake by liver	Referred from Mc Auley et al.
Hep_up_HDLC	Rate of uptake of HDLC particles by the liver	Referred from Mc Auley et al.

Ordinary Differential Equations for Cholesterol Metabolism

----- Total Cholesterol -----

$$\frac{d(TC)}{dt}$$

= HDLC_synth + VLDLC_synth - Hepatic_uptake - Peripheral_uptake;

----- Hepatic Free Cholesterol -----

$$\frac{d(HFC)}{dt}$$

 $= HCE_to_HFC - HFC_to_HCE - Hep_VLDLC_synth - BS_synth + \left(\frac{Vol_I}{Vol_L}\right) \\ + HC_synth - BC_release + (1/(VC*Vol_L))*(Hep_IDLC_removal + Hep_VLDLC_removal + Hep_up_LDLC + Hep_up_LDLC_indep + Hep_up_EDLC + Hep_up_LDLC_indep + Hep_up_EDLC + Hep_up_LDLC_indep + Hep_up_EDLC + Hep_up_EDLC_indep + Hep_up_E$

----- Hepatic Cholesterol Ester -----

$$\frac{d(HCE)}{dt} = HFC_to_HCE - HCE_to_HFC;$$

----- Hepatic LDL Receptors -----

$$\frac{d(\textit{HLDLR})}{dt} = \textit{Hep_LDLR_synth} - \textit{Hep_LDLR_death};$$

----- Hepatic Bile Salts -----

$$\frac{d(\textit{HBS})}{dt} = \textit{BS_synth} + \left(\frac{\textit{Vol}_l}{\textit{Vol}_L}\right) * \textit{HBS_return} - \textit{BS_release};$$

----- Intestinal Bile Salts -----

$$\frac{d(IBS)}{dt} = \left(\frac{Vol_L}{Vol_I}\right) * BS_release - HBS_return - BS_excr;$$

----- Intestinal Cholesterol -----

$$\frac{d(\mathit{IC})}{dt} = \mathit{Diet_absp} + \mathit{IC_synth} + \left(\frac{\mathit{Vol}_\mathit{L}}{\mathit{Vol}_\mathit{I}}\right) * \mathit{BC_release} - \mathit{Int_chol_absp} - \mathit{Int_chol_excr};$$

----- Excreted Cholesterol -----

$$\frac{d(EC)}{dt} = Int_chol_excr;$$

----- Excreted Bile Salts -----

$$\frac{d(EBS)}{dt} = BS_excr;$$

References

Mc Auley, M. T., Wilkinson, D. J., Jones, J. J. L. & Kirkwood, T. B. L. A whole-body mathematical model of cholesterol metabolism and its age-associated dysregulation. *BMC Syst. Biol.***6**, 130 (2012).