Supporting information

D-glucose based bisacrylamide crosslinker: Synthesis and study of homogeneous biocompatible glycopolymeric hydrogels

Juby K. Ajish, ${ }^{\neq \dagger}$ K. S. Ajish Kumar, ${ }^{\S}$ Mahesh Subramanian, ${ }^{\S}$ Manmohan Kumar ${ }^{\dagger \ddagger}$
${ }^{\text {§Bio-Organic Division, }}{ }^{\dagger}$ Radiation and Photochemistry Division, Bhabha Atomic Research
Centre,
Trombay, Mumbai 400085
E-mail:ajish@barc.gov.in,manmoku@barc.gov.in

\neq These authors contributed equally to the work

Contents

Materials S3
Methods S3
Experimental. S4-S11
${ }^{1} H$ NMR spectrum of compound 4 S12
${ }^{13}$ C NMR spectrum of compound 4 S13
LC-MS data of compound 4 S14
${ }^{1} \mathrm{H}$ NMR spectrum of compound 5 S15
${ }^{13} \mathrm{C}$ NMR spectrum of compound 5 S16
${ }^{1} H$ NMR spectrum of compound 6. S17
${ }^{13} \mathrm{C}$ NMR spectrum of compound 6 S18
LC-MS data of compound 6 S19
${ }^{1} \mathrm{H}$ NMR spectrum of compound 2 a S20
${ }^{13} \mathrm{C}$ NMR spectrum of compound 2 a S21
LC-MS data of compound 2a S22
${ }^{1} H$ NMR spectrum of compound 8 S23
${ }^{13} \mathrm{C}$ NMR spectrum of compound 8 S24
${ }^{1} H$ NMR spectrum of compound 9. S25
${ }^{13} \mathrm{C}$ NMR spectrum of compound 9 S26
LC-MS data of compound 9 S27
${ }^{1} \mathrm{H}$ NMR spectrum of compound 10 S28
${ }^{13} \mathrm{C}$ NMR spectrum of compound 10 S29
${ }^{1} \mathrm{H}$ NMR spectrum of compound 11 S30
${ }^{13} \mathrm{C}$ NMR spectrum of compound 11 S31
LC-MS data of compound 11 S32
${ }^{1} \mathrm{H}$ NMR spectrum of compound 12 S33
${ }^{13} \mathrm{C}$ NMR spectrum of compound 12 S34
LC-MS data of compound 12 S35
${ }^{1}$ H NMR spectrum of compound 2 b S36
${ }^{13} \mathrm{C}$ NMR spectrum of compound 2 b S37
LC-MS data of compound $\mathbf{2 b}$ S38
Thermal degradation profile of a typical vaccum dried Glc-gel. S39
In vitro cell cytotoxicity test S39-S40
SEM image of Glc-gel. S40

Materials

Methanol, dichloromethane, pyridine, triethylamine, were purified and dried before use. The nhexane used was the fraction distilling between $40-60^{\circ} \mathrm{C}$. All the chemicals including acryloyl chloride were procured from either Aldrich or Fluka. DMEM cell cuture medium, Penicillin and Streptomycin were purchased from HiMedia, Mumbai, India. Fetal Bovine Serum (FBS) was procured from Invitrogen BioServices India Pvt. Ltd. MTT was from Sigma Aldrich. Water, with conductivity $0.6 \mu \mathrm{~S} \mathrm{~cm}^{-1}$, from Millipore Milli-Q system, was used for the preparation of aqueous solutions.

Methods

The melting points were recorded with a Thomas Hoover Capillary melting point apparatus and are uncorrected. The IR spectra were recorded using diamond single reflectance ATR in IR Affinity- 1 spectrometer. The samples were analyzed over the range of $400-4000 \mathrm{~cm}^{-1}$, operating at $4 \mathrm{~cm}^{-1}$ resolution. The ${ }^{1} \mathrm{H}(200 \mathrm{MHz}, 600 \mathrm{MHz}, 700 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(50 \mathrm{MHz}, 126 \mathrm{MHz}, 176$ $\mathrm{MHz}) \mathrm{NMR}$ spectra were recorded with a Brüker Oxford instrument in $\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD}$ or $\mathrm{D}_{2} \mathrm{O}$ as solvents. The elemental analysis was carried out with a Thermo-Electron Corporation CHNS analyzer model Flash-EA 1112. The optical rotations were measured using a Jasco P1020 polarimeter. Mass of the materials was carried out with a MS (70 eV). The thin layer chromatography was performed on pre-coated plates (0.25 mm , silica gel 60 F 254), and the spots were visualized by UV light or by spraying with 3.5% solution of 2,4-dinitrophenylhydrazine in ethanol $/ \mathrm{H}_{2} \mathrm{SO}_{4}$ or with basic aqueous KMnO_{4} solution followed by heating. A Co-60 gamma radiation source was used with a dose rate of $1.23 \mathrm{KGy} / \mathrm{h}$. Irradiation was carried out in $1 \mathrm{~cm} \times 1$ cm closed glass vials in nitrogen atmosphere.

Experimental

3-Azido-3-deoxy-5-hydroxy-1,2-O-isopropylidene-6-O-tosyl- α-D-gluco-furanose (4).

To a stirred solution of the azido diol $3(3.50 \mathrm{~g}, 14.27 \mathrm{mmol})$ and pyridine $(1.38 \mathrm{~mL}, 17.12$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, at $0{ }^{\circ} \mathrm{C}$ was added tosyl chloride ($2.91 \mathrm{~g}, 15.27 \mathrm{mmol}$) dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ dropwise and DMAP $(0.08 \mathrm{~g}, 0.71 \mathrm{mmol})$. The reaction mixture was stirred at same temperature for 1 h , slowly brought to $25^{\circ} \mathrm{C}$ and stirred for additional 2 h . After completion of reaction ($c f . \mathrm{TLC}$), water $(50 \mathrm{~mL})$ was added and extracted with EtOAc (100 mL). The organic layer was washed, sequentially, with cold $1 \mathrm{~N} \mathrm{HCl}(2 \times 20 \mathrm{~mL})$, saturated NaHCO_{3} ($1 \times 20 \mathrm{~mL}$), brine ($1 \times 20 \mathrm{~mL}$), water ($1 \times 50 \mathrm{~mL}$), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and evaporation in vacuo gave a residue, which on column chromatography afforded 4 ($4.96 \mathrm{~g}, 87 \%$) as a thick liquid: $\mathrm{R}_{f}=0.48(30 \% \mathrm{EtOAc} /$ hexane $) ;[\alpha]_{\mathrm{D}}^{25}-7.27\left(\mathrm{c} 1.1, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 1176$, $1367 ; \delta_{\mathrm{H}}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.81(\mathrm{~d}, J=3.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~s}, 1 \mathrm{H}), 4.11-4.07(\mathrm{~m}, 3 \mathrm{H})$, $2.74\left(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}(50$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 145.8,132.9,130.7,128.7,113.1,105.6,83.8,78.1,73.1,68.2,66.8,27.2,26.9$, 22.3. Elem. Anal.Calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}: \mathrm{C}, 48.11$; H, 5.30. Found: C, 48.15; H, 5.37; ESI-MS: Calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}+\mathrm{Na}\right]^{+}$: 422.01 Da, Obsd: 421.85 Da .

3,6-Diazido-3,6,-dideoxy-5-hydroxy-1,2-O-isopropylidene- α-D-gluco-furanose (5).

To a solution of tosylate (4) ($4.51 \mathrm{~g}, 11.29 \mathrm{mmol})$ in DMF $(20 \mathrm{~mL})$ was added sodium azide $(1.83 \mathrm{~g}, 28.25 \mathrm{mmol})$ and heated at $80^{\circ} \mathrm{C}$ for 3 h . After completion of reaction (cf. TLC), DMF was removed under vacuo, and the residue was extracted with EtOAc (3 x 50 mL). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified using column
chromatography to give diazide (5) as thick liquid (2.63 g, 86\%): $\mathrm{R}_{f}=0.49(25 \%$ EtOAc/hexane); $[\alpha]_{\mathrm{D}}^{25}-40.05\left(\mathrm{c} \mathrm{1.2}, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 2100 ; \delta_{\mathrm{H}}\left(700 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.87(\mathrm{~d}, J=$ $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.17(\mathrm{~m}, 2 \mathrm{H}), 4.03-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=$ $12.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=12.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.32\left(\mathrm{~m}, 1 \mathrm{H}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right)$, $1.51(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 113.1, 105.6, 83.9, 79.8, 69.3, 66.8, 55.5, 27.2, 26.8. Elem. Anal. Calcd. for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}_{4}$: C, 40.00 ; H, 5.22. Found: C, 40.07 ; H, 5.18.

3,6-Bisacrylamido-3,6,-dideoxy-5-hydroxy-1,2-O-isopropylidene- $\alpha-\mathrm{D}-$ gluco-furanose (6).

To a solution of diazido alcohol (5) ($2.45 \mathrm{~g}, 9.06 \mathrm{mmol}$) in $\mathrm{MeOH}(30 \mathrm{~mL})$, was added 10% $\mathrm{Pd} / \mathrm{C}(0.17 \mathrm{~g})$ and hydrogenated (80 psi) for 12 h at $25^{\circ} \mathrm{C}$. The catalyst was filtered through a pad of Celite 545 using $\mathrm{MeOH}(4 \times 10 \mathrm{~mL})$. The filterate was concentrated and dried under vaccum. The vaccum dried diamine was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$ and DIEA (7.89 mL , 45.30 mmol), cooled to $-40^{\circ} \mathrm{C}$, acryloyl chloride ($1.64 \mathrm{~mL}, 20.11 \mathrm{mmol}$) was added and stirred at same temperature for 20 min . After completion of reaction (cf. TLC), reaction mixture was diluted with cold water (5 mL), and extracted using $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic layer was kept over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuo, and purified using column chromatography to afford (6) as a thick liquid ($2.36 \mathrm{~g}, 79 \%$ (over two steps) $)$: $\mathrm{R}_{f}=0.15(80 \%$ EtOAc/hexane); $[\alpha]_{\mathrm{D}}^{25}+90.35$ (c 1.50, $\left.\mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 1685,1665,1551 ; \delta_{\mathrm{H}}(600 \mathrm{MHz} ;$ $\left.\mathrm{CD}_{3} \mathrm{OD}\right) 7.85\left(\mathrm{~s}, 1 \mathrm{H}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 6.30-6.12(\mathrm{~m}, 4 \mathrm{H}), 5.84(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.66(\mathrm{dd}, J=8.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{dd}, J=10.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J$ $=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=8.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.62(\mathrm{~m}, 2 \mathrm{H}), 3.27(\mathrm{~s}, 1 \mathrm{H}$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 3.15(\mathrm{dd}, J=14.4,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(126 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right)$
$167.1,167.0,130.6,129.9,126.7,125.5,111.7,104.7,84.0,79.8,67.2,55.8,42.9,25.5,25.1$. Elem. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, 55.21; H, 6.79. Found: C, 55.19; H, 6.85; ESI-MS: Calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6}+\mathrm{Na}\right]^{+}$: 349.12 Da, Obsd: 348.98 Da.

(2R,3S,4S,5S)-4-acrylamido-6-(acrylamidomethyl)-tetrahydro-2H-Pyran2,3,5-triol (2a).

A pre-cooled solution of TFA- $\mathrm{H}_{2} \mathrm{O}(3: 2,10 \mathrm{~mL})$ was added dropwise to a RB charged with bisacrylamide (6) ($1.30 \mathrm{~g}, 3.98 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at same temperature for 30 min , slowly brought to $25^{\circ} \mathrm{C}$ and stirred for additional 10 h . After completion of reaction ($c f$. TLC) TFA was coevaporated with toluene and dried under vaccum. The residue was precipitated using dry EtOAc (20 mL) and washed well with EtOAc ($5 \times 10 \mathrm{~mL}$). The residue was vaccum dried, redissolved in double distilled water, filtered through Millex (25 mm , $5 \mu \mathrm{~m})$ and lyophilized to afford bisacrylamide (2a) as a white amorphous powder ($0.78 \mathrm{~g}, 68 \%$): $v_{\max } / \mathrm{cm}^{-1} 1651,1640,1552 ;{ }^{1} H$ NMR revealed the formation of anomeric mixture in the ratio of 55:45 in favor of α-isomer. $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 6.41-6.31(\mathrm{~m}, 2 \mathrm{H}), 6.29-6.21(\mathrm{~m}, 2 \mathrm{H}), 5.88-$ $5.78(\mathrm{~m}, 2 \mathrm{H}), 5.27(\mathrm{~d}, J=3.6 \mathrm{~Hz}, \mathrm{H} 1 e), 4.76(\mathrm{~d}, J=7.8 \mathrm{~Hz}, \mathrm{H} 1 a), 4.22(\mathrm{t}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.09$ $-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.61-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.33(\mathrm{~m}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}(126 \mathrm{MHz} ;$ $\mathrm{D}_{2} \mathrm{O}$) (only major peaks are mentioned) $169.5,168.8,129.9,129.7,127.7,127.5,91.5,69.9$, 69.7, 69.5, 53.8, 40.0. Elem. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, 50.35; H, 6.34. Found: C, 50.41; H, 6.38; ESI-MS: Calcd. for. $\left[\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6}+\mathrm{Na}\right]^{+}$: 309.09 Da, Obsd: 308.90 Da.

$\{[1,2],,[5,6]\}-\mathrm{Di}-O$-isopropylidene-3-O-tert-butyldiphenylsilyl- α-D-gluco-furanose (8).

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of diacetone D-glucose (7) (5.00 g, 19.21 mmol$)$ and imidazole (2.61 $\mathrm{g}, 38.42 \mathrm{mmol}$) in DMF (25 mL) was added TBDPSCl ($6.16 \mathrm{~mL}, 24.01 \mathrm{mmol}$) dropwise,
followed it with DMAP ($0.12 \mathrm{~g}, 0.96 \mathrm{mmol}$). The reaction mixture was slowly brought to $30{ }^{\circ} \mathrm{C}$, and stirred for additional 24 h . After the completion of reaction ($c f$. TLC), usuall work up using EtOAc (200 mL) afforded a thick residue which on coloumn purification afforded (8) as a thick liquid ($8.30 \mathrm{~g}, 86 \%$): $\mathrm{R}_{f}=0.55(10 \% \mathrm{EtOAc} /$ hexane $) ;[\alpha]_{\mathrm{D}}^{25}-10.08$ (c $1.0, \mathrm{CHCl}_{3}$); $v_{\max } / \mathrm{cm}^{-1}$ 1211,$1093 ; \delta_{\mathrm{H}}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.98-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.32(\mathrm{~m}, 6 \mathrm{H}), 5.81(\mathrm{~d}, J=3.2 \mathrm{~Hz}$, 1H), $4.48-4.42(\mathrm{~m}, 2 \mathrm{H}), 4.19-4.15(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-3.97(\mathrm{~m}, 2 \mathrm{H}), 1.42$ $(\mathrm{s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(176 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 136.7, 136.4, 134.7, 133.2, 130.6, 130.2, 128.5, 128.3, 112.3, 109.8, 105.7, 85.2, 83.2, 77.3, 72.9, 68.6, 27.6, 27.5, 27.3, 26.7, 25.9, 20.1. Elem. Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{Si}$: C, 67.44; H, 7.68. Found: C, 67.47; H, 7.62.

5,6-Dihydroxy-1,2-O-isopropylidene-3-O-tert-butyldiphenylsilyl- α-D-gluco-furanose (9).

To a solution of ($\mathbf{8})(8.00 \mathrm{~g}, 16.04 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was slowly added 30% perchloric acid (8 mL). The reaction mixture was stirred at same temperature until it showed complete conversion ($c f$. TLC), neutralized using $\mathrm{K}_{2} \mathrm{CO}_{3}$ (saturated) solution, concentrated, and extracted using EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, to afford a thick liquid which was purified using coloum chromatography to yield $\operatorname{diol}(9)$ as a white solid (5.72 g, 77\%): Mp $120^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.30(30 \% \mathrm{EtOAc} /$ hexane $) ;[\alpha]_{\mathrm{D}}^{25}-17.50$ (c 1.1, CHCl_{3}); $v_{\max } / \mathrm{cm}^{-1} 3355 \mathrm{br}, 1227,1064 ; \delta_{\mathrm{H}}\left(700 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.73(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.68(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 5.84(\mathrm{~d}, J=3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.48(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.88-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J$ $=11.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.61\left(\mathrm{~m}, 2 \mathrm{H}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H})$,
$1.10(\mathrm{~s}, 9 \mathrm{H}) ; \delta_{\mathrm{C}}\left(176 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 136.5,136.4,134.5,133.2,130.9,130.8,128.7,128.6,112.4$, $105.5,85.1,81.9,77.4,69.2,65.2,27.7,27.3,26.7,20.2$. Elem. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{6} \mathrm{Si}: \mathrm{C}$, 65.47; H, 7.47. Found: C, 65.44; H, 7.45; ESI-MS: Calcd. for $\left[\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{6} \mathrm{Si}+\mathrm{Na}\right]^{+}: 481.19 \mathrm{Da}$, Obsd: 481.02 Da.

6-Azido-6-deoxy-5-hydroxy-1,2-O-isopropylidene-3-O-tert-butyldiphenylsilyl- α-D-gluco-

 furanose (10).To a solution of diol (9) (5.52 g, 12.03 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added triethyl amine ($2.01 \mathrm{~mL}, 14.42 \mathrm{mmol}$) followed it with dropwise addition of methane sulfonyl chloride ($0.98 \mathrm{~mL}, 12.63 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ over 30 min . The reaction was stirred at same temperature for 1 h , then brought to $25^{\circ} \mathrm{C}$ and stirred for additional 1 h . The reaction was quenched using cold water (20 mL) and extracted using $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and dried under vaccum to afford mesylate (crude) as a thick liquid. To the solution of mesylate (crude) in DMF (25 mL), was added sodium azide ($5.47 \mathrm{~g}, 84.21 \mathrm{mmol}$) and heated at $70-80^{\circ} \mathrm{C}$ for 3 h . The usual workup and coloum purification afforded azide (10) (3.10 g, 53\%): $\mathrm{R}_{f}=0.70\left(20 \%\right.$ EtOAc/hexane); $[\alpha]{ }_{\mathrm{D}}^{25}-22.25$ (c 1.1, $\left.\mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 2098,1215,1093 ; \delta_{\mathrm{H}}\left(700 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.74(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 4 \mathrm{H}), 5.90(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=$ $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.08(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=$ $12.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=12.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}) ; \delta_{\mathrm{C}}\left(176 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 136.4, 136.3, 134.2, 133.1, $131.0,130.9,128.8,128.7,112.5,105.6,85.2,81.7,77.1,68.5,55.5,27.7,27.4,26.8,20.1$. Elem. Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Si}$: C, 62.09; H, 6.88. Found: C, 62.15; H, 6.93.

6-Acrylamido-6-deoxy-5-hydroxy-1,2-O-isopropylidene-3-O-tert-butyldiphenylsilyl- α-D-gluco-furanose (11).

The hydroxyl azide (10) (3.30 g, 6.82 mmol$)$ was subjected to hydrogenation $(10 \% \mathrm{Pd} / \mathrm{C}(0.20$ g), $\left.\mathrm{H}_{2}(20 \mathrm{psi}), 5 \mathrm{~h}\right)$ and acrylation (acryloyl chloride ($0.58 \mathrm{~mL}, 7.17 \mathrm{mmol}$), DIEA (1.42 mL , $8.18 \mathrm{mmol})$) sequentially, as mentioned earlier for the synthesis of bisacrylamide (6), to afford acrylamide (11) as a thick liquid ($2.90 \mathrm{~g}, 83 \%$ (over two steps)): $\mathrm{R}_{f}=0.20$ ($30 \% \mathrm{EtOAc} /$ hexane); $[\alpha]_{\mathrm{D}}^{25}+24.21\left(\mathrm{c} 1.2, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 3490 \mathrm{br}, 1680 ; \delta_{\mathrm{H}}\left(700 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.76-7.74(\mathrm{~m}, 2 \mathrm{H})$, $7.70-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 6.34-6.29(\mathrm{~m}, 1 \mathrm{H}), 6.19(\mathrm{~s}$, 1 H , exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 6.13(\mathrm{dd}, J=17.0,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.69$ (dd, $J=10.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{ddd}, J=14.4,6.1$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{bs}, 1 \mathrm{H}), 3.46(\mathrm{dt}, J=14.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.61\left(\mathrm{~s}, 1 \mathrm{H}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right)$, $1.36(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 12 \mathrm{H}) ; \delta_{\mathrm{C}}\left(176 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 168.6,136.7,136.4,134.8,133.1,130.9,130.8$, 130.7, 128.7, 128.6, 127.9, 112.3, 105.5, 85.1, 82.6, 77.1, 69.1, 45.5, 27.6, 27.5, 26.8, 20.2. Elem. Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{NO}_{6} \mathrm{Si}$: C, 65.72; H, 7.29; Found: C, 65.75; H, 7.36; ESI-MS: Calcd. for $\left[\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{NO}_{6} \mathrm{Si}+\mathrm{Na}\right]^{+}$: 534.22 Da, Obsd: 534.09 Da

6-Acrylamido-6-deoxy-3,5-dihydroxy-1,2-O-isopropylidene- α-D-gluco-furanose (12).

To a solution of acrylamide (11) (1.00 g, 1.93 mmol$)$ in THF at $0^{\circ} \mathrm{C}$ was added TBAF $(1 \mathrm{M}$ in THF) ($2.51 \mathrm{~mL}, 2.51 \mathrm{mmol}$). The reaction mixture was stirred to $30{ }^{\circ} \mathrm{C}$ for 1.5 h . After completion of reaction (cf. TLC) the reaction mixture was concentrated under vaccum, and extracted using EtOAc ($6 \times 20 \mathrm{~mL}$). The resultant thick liquid, was purified using coloumn chromatography to afford the diol (12) as a thick liquid ($0.44 \mathrm{~g}, 83 \%$) $\mathrm{R}_{f}=0.25$ (EtOAc);
$[\alpha]_{\mathrm{D}}^{25}+4.00(\mathrm{c} 1.1, \mathrm{MeOH}) ; v_{\max } / \mathrm{cm}^{-1} 3500 \mathrm{br}, 1687,1671,1545 ; \delta_{\mathrm{H}}\left(600 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 6.34-$ $6.19(\mathrm{~m}, 2 \mathrm{H}), 5.87(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 1 \mathrm{H}), 4.20(\mathrm{~s}, 1 \mathrm{H}), 3.98$ $-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.32-3.27(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}(176$ $\left.\mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 167.4,130.7,125.4,111.3,105.1,85.6,81.4,73.9,67.3,43.4,25.7$, 25.0. Elem. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{6}$: C, 52.74 ; H, 7.01. Found: C, 52.81 ; H, 6.97 ; ESI-MS: Calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{6}+\mathrm{Na}\right]^{+}: 296.10 \mathrm{Da}$, Obsd: 295.92 Da.
N-(((3S,4S,5S,6R)-tetrahydro-3,4,5,6-tetrahydroxy-2H-pyran-2-yl)methyl)acrylamide (2b). A pre-cooled solution of TFA- $\mathrm{H}_{2} \mathrm{O}(3: 2,10 \mathrm{~mL})$ was added dropwise to RB charged with acrylamide (12) ($1.30 \mathrm{~g}, 4.75 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at same temperature for 30 min , slowly brought to $25^{\circ} \mathrm{C}$ and was stirred for additional 10 h . After completion of reaction ($c f$. TLC) the reaction was worked up as mentioned for the synthesis of bisacrylamide (2a) to get (2b) as a white amorphous powder ($0.73 \mathrm{~g}, 66 \%$): $v_{\max } / \mathrm{cm}^{-1} 1658$, 1610, 1539; ${ }^{l} H$ NMR revealed the formation of anomeric mixture in the ratio of 55:45 in favor of α-isomer. $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 6.61-6.42(\mathrm{~m}, 2 \mathrm{H}), 5.85-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, $\mathrm{H} 1 e), 4.62(\mathrm{~d}, J=7.0 \mathrm{~Hz}, \mathrm{H} 1 a), 3.79-3.40(\mathrm{~m}, 4 \mathrm{H}), 3.38-3.17(\mathrm{~m}, 2 \mathrm{H}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right)$ (peaks due to both α-and β-isomer are listed) $\delta 168.9,168.8,129.6$ (strong), 127.6,127.5, 95.9, $92.0,75.4,74.1,73.9,72.5,71.4,71.1,70.9,69.7,40.1,39.9$. Elem. Anal. Calcd. for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{6}$: C, 46.35; H, 6.48. Found: C, 46.32; H, 6.44; ESI-MS: Calcd. for $\left[\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{6}+\mathrm{Na}\right]^{+}: 256.07 \mathrm{Da}$, Obsd: 255.91 Da.

In vitro cell cytotoxicity test

The cell lines INT407 (human intestinal epithelial cell line) and L929 (mouse fibroblast cell line) were obtained from National Centre for Cell Sciences (NCCS), Pune, India. The cells were grown in DMEM medium with 10% fetal bovine serum, penicillin ($100 \mathrm{U} / \mathrm{mL}$) and streptomycin $(100 \mu \mathrm{~g} / \mathrm{mL})$. Both the qualitative and quantitative in vitro cytotoxicity studies towards the test samples, were performed, respectively by microscopically observing the growth of the cells and by MTT, (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. In the former 15,000 cells were plated per well in a 24 well plate and allowed to adhere overnight. The test samples Glc-acryl, Glc-bis and Glc-gel (obtained directly after gamma irradiation) were added to the appropriate wells next day. Photograph of the cells were taken at regular intervals employing an inverted microscope with an attached camera (Leica EC3 type, Switzerland) at $40 \times$ magnification. In the MTT assay the procedure mentioned above was followed and at the end of 48 h of incubation with the test samples, the number of viable cells in each well was quantified by incubation with MTT ($0.5 \mathrm{mg} / \mathrm{mL}$) for 4 h , followed by solubilisation buffer ($10 \% \mathrm{SDS}$ in 0.01 N HCl) overnight. The plate was read in a plate reader at 550 nm . In both the experiments the samples were in triplicates and each experiment was conducted twice.

ゝ｣

Thermal degradation profile of a typical vaccum dried Glc-gel
(A)

(B)

Growth of cells monitored in the absence and presence of test samples ($1 \mathrm{mg} / \mathrm{mL}$ each of Glc-acryl and Glc-bis and 20 mg piece of Glc-gel) under microscope ($40 \times$ magnification). (A) INT407 cells and (B) L929 cells.

SEM image showing the porous structure of a typical freeze dried Glc-gel

