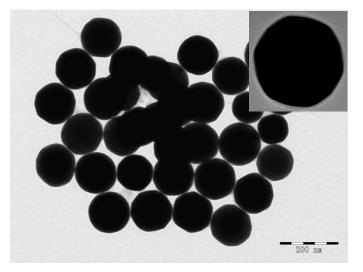
Supporting Information


A novel process to prepare thin silica shell on the PDDAstabilized spherical Au nanoparticles assisted by UV light irradiation

Lifeng Hang,^{a,b} Cuncheng Li,^c Tao Zhang,^c Xinyang Li,^a Yanchun Wu^{a,b} Dandan Men,^{a,b} Guangqiang Liu^a and Yue Li,^{*a,b}

^{*a*} Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, P. R. China

^b University of Science and technology of China, Hefei 230026, P. R. China

^c Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, P. R. China

Figure S1. TEM image of core-shell nanoparticles obtained by UV light irradiated PDDA stabilized Au NPs and subsequent the polymerization reaction of silica under the PH=10, 0.2 vol% in 1.2 mL 2-propanol.

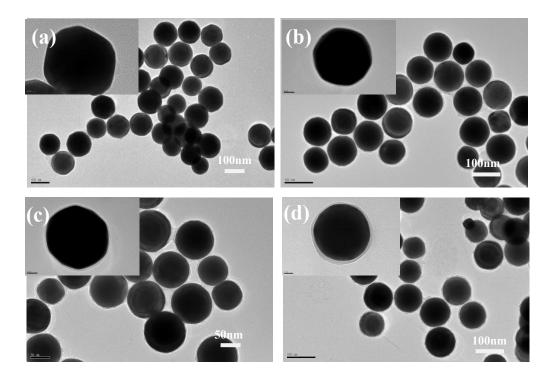
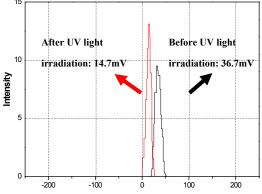



Figure S2. TEM images of $Au@SiO_2$ core-shell particles with different shell thicknesses under the PH=10, (a) 2 nm with 0.1 vol% in 1.2 mL 2-propanol, (b) 4 nm with 0.2 vol% in 1.2 mL 2-propanol, (c) 5 nm with 0.3 vol% in 1.2 mL 2-propanol, (d) 8 nm with 0.4 vol% in 1.2 mL 2-propanol.

Figure S3. Black line is Zeta potential of pure PDDA-stabilized Au NPs, the red line is Zeta potential of Au NPs which were treated by ultraviolet light.

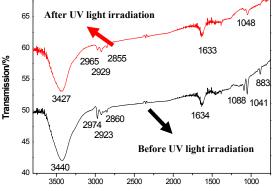


Figure S4. IR Spectrum of the PDDA-stabilized Au NPs, black line is PDDA-stabilized Au NPs without ultraviolet light treatment and red line is PDDA-stabilized

Au NPs after treated by UV light irradiation