Electronic Supplementary Information

Metabolic analysis of butanol production from acetate in *Clostridium* saccharoperbutylacetonicum N1-4 using ¹³C tracer experiments

Ming Gao, a Yukihiro Tashiro, b, c Tsuyoshi Yoshida, a Jin Zheng, a Qunhui Wang, d Kenji Sakai, b Kenji Sonomoto* a,

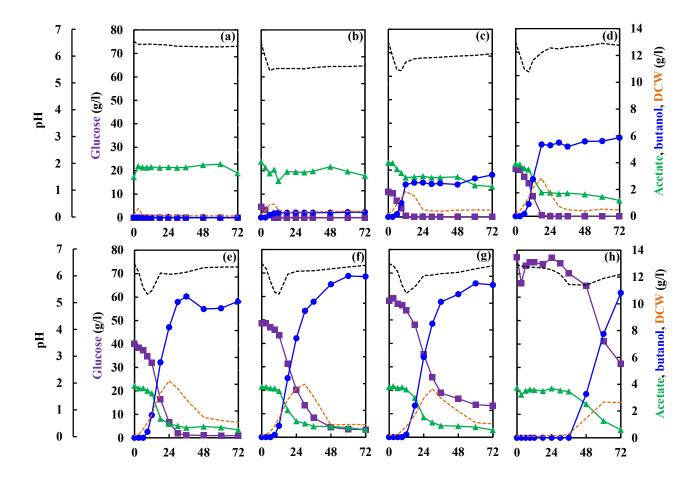
*Corresponding author E-mail: sonomoto@agr.kyushu-u.ac.jp Tel/Fax: +81-(0)92-642-3019

Table S1. Additional parameters of batch cultures in TY medium containing exogenously added acetate

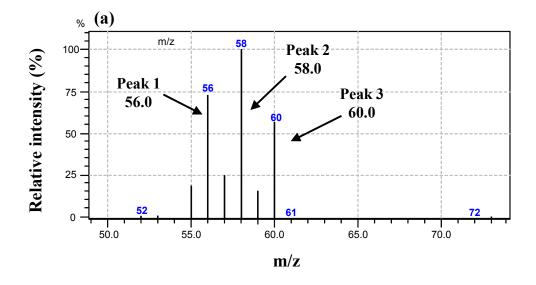
Initial acetate (g/L)	Glucose consumption ^a (g/L)	Maximum glucose consumption rate (g/L/h)	Acetate/glucose consumption ^{a,b} (C-mol/C-mol)	Acetone yield ^{a,c} (C-mol/C-mol)	Ethanol yield ^{a,d} (C-mol/C-mol)	Ratio of acetone/butanol a (g/g)	Maximum specific butanol production ^e rate (g/g/h)
A0	33.6	1.44 (24h)		0.150	0.0204	0.384	0.245 (18h)
A2	46.5	2.67 (18h)	0.0363	0.153	0.0436	0.354	0.529 (9h)
A4	46.2	2.54 (18h)	0.0739	0.193	0.0300	0.488	0.540 (9h)
A6	46.2	2.48 (18h)	0.107	0.231	0.0250	0.642	0.331 (18h)

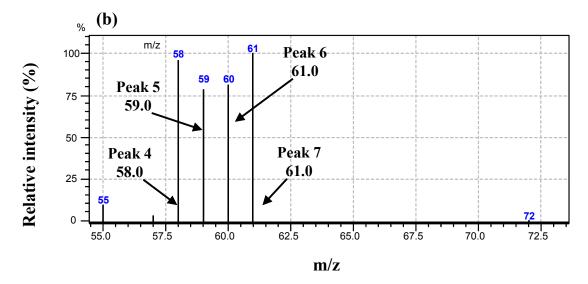
Batch cultures were performed using *C. saccharoperbutylacetonicum* N1-4 at 30°C, for 72, h in TY medium containing 50 g/L glucose, without pH control (working volume, 300 ml).

^a Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan


^b Laboratory of Soil Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Japan, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan

^c Institute of Advanced Study, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan


^d Department of Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China


^e Laboratory of Functional Food Design, Department of Functional Metabolic Design, Bio-Architecture Centre, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan

^a The parameters were calculated after 72-h cultivation period. ^b Acetate/glucose consumption (C-mol/C-mol) = Acetate consumption (mM) × 2/glucose consumption (mM) × 6. ^c Acetone production/total substrates consumption (C-mol/C-mol) = Acetone production (mM) × 3/[glucose consumption (mM) × 6 + Acetate consumption (mM) × 2]. ^d Ethanol production / total substrates consumption (C-mol/C-mol) = Ethanol production (mM) × 2/[glucose consumption (mM) × 6 + Acetate consumption (mM) × 2]. ^e Specific butanol production rate (g/g/h) = 2 × (C₂ - C₁)/ (t₂ - t₁)/ (X₂ +

Fig. S1 Time course of batch culture with different concentrations of glucose ranging from 0–80 g/L (working volume, 70 ml). (a) G0; (b) G4; (c) G10; (d) G20; (e) G40; (f) G50; (g) G60; (h) G80. (G: glucose). Symbols: butanol concentration in the broth, blue *circles*; acetate, green *triangles*; glucose, purple *squares*; pH, black *dashed line*; DCW, brown *dashed line*.

Fig. S2 Mass spectra of butanol and acetone by GC-MS analysis. (a) Mass spectra of butanol in culture broth of the N1-4 strain, cultured with ${}^{12}C_6$ -glucose and [1, 2- ${}^{13}C_2$] acetate at 9 h. Peak 1, 2 and 3 (indicated by arrows), were derived from three isotopes of butanol: ${}^{12}C_4$ -butanol; ${}^{13}C_2$ -butanol, in which two out of four carbons were replaced by a ${}^{13}C$ -atom; and ${}^{13}C_4$ -butanol, respectively. (b) Mass spectra of acetone in culture broth of the N1-4 strain, cultured with ${}^{12}C_6$ -glucose and [1, 2- ${}^{13}C_2$] acetate at 9 h. Peak 4, 5, 6 and 7, indicated by arrows, were derived from four isotopes of acetone: ${}^{12}C_3$ -acetone; ${}^{13}C_1$ -acetone, in which one out of three carbons was replaced by ${}^{13}C$ -atom; ${}^{13}C_2$ -acetone, in which two out of three carbons were replaced by ${}^{13}C$ -atom; and ${}^{13}C_3$ -acetone, respectively. X-axis: m/z (mass-to-charge ratio).