Catalytic dehydration of fructose to 5-hydroxymethylfurfural over mesoscopically assembled sulfated zirconia nanoparticles catalyst in organic solvent

Supplementary data

Contents

- 1. Particles Size Calculation
- 2. Reactor Studies
- 3. Supporting figures

1. Particles Size Calculation:

Here, we calculated the particle size by using Scherrer equation based on PXRD result.

According to the Scherrer equation size of the crystallite $D=K\lambda/(\beta\cos\theta)$ Where;

 β is the full width of the peak at half maximum intensity of a specific phase in radian.

K is a constant that varies with the method of taking the breadth $(0.89 \le K \le 1)$.

 λ is the wavelength of incident X-rays.

 θ is the centre angle of the peak.

D is the crystallite length.

From Fig. 2, for the MAZN-1;

 $2\theta = 30.46^{\circ}; \theta = 15.23^{\circ}; \cos \theta = \cos (15.23^{\circ}) = 0.965; \beta = 0.0184; \lambda = 0.154 \text{ nm and}$

K = 0.9

Therefore, estimated D for MAZN-1 will be 7.80 nm.

Particles size for the MAZN-2 will be calculated as follows.

 $2\theta = 30.34^{\circ}; \theta = 15.17^{\circ}; \cos \theta = 0.9652; \beta = 0.0186; \lambda = 0.154 \text{ nm and } K = 0.9$

D for MAZN-2 will be 7.72 nm.

Particles size calculation will be for MAZN-3

 $2\theta = 30.17^{\circ}$; $\theta = 15.085^{\circ}$; Cos $\theta = 0.966$; $\beta = 0.0194$; $\lambda = 0.154$ nm and K = 0.9

D for MAZN-3 will be 7.39 nm.

Particles size calculation will be for MAZN-4

 $2\theta = 30.17^{\circ}$; $\theta = 15.085^{\circ}$; Cos $\theta = 0.966$; $\beta = 0.0198$; $\lambda = 0.154$ nm and K = 0.9

D for MAZN-4 will be 7.24 nm.

Particle Size Calculation after Sulfonation:

From Fig. 3(a), for the MASZN-1;

 $2\theta = 28.16^{\circ}; \theta = 14.08; \cos\theta = 0.97; \beta = 0.0196; \lambda = 0.154; K = 0.9$

Therefore, estimated D for MASZN-1 will be 7.29 nm.

From Fig. 3(b), for the MASZN-2;

 $2\theta = 28.15^{\circ}; \theta = 14.075; \cos\theta = 0.97; \beta = 0.0179; \lambda = 0.154; K = 0.9$

Therefore, estimated D for MASZN-2 will be 7.98 nm.

From Fig. 3(c), for the MASZN-3;

 $2\theta = 28.15^{\circ}; \theta = 14.075; \cos\theta = 0.97; \beta = 0.0182; \lambda = 0.154; K = 0.9$

Therefore, estimated D for MASZN-3 will be 7.85 nm.

From Fig. 3(d), for the MASZN-4;

 $2\theta = 28.15^{\circ}; \theta = 14.075; \cos\theta = 0.97; \beta = 0.0196; \lambda = 0.154; K = 0.9$

Therefore, estimated D for MASZN-4 will be 7.29 nm.

2. Reactor Studies

 Table S1. Conversion and yield following glucose dehydration over mesoscopic assembly sulfated zirconia nanoparticles.^[a]

Entry	Substrate	Catalysis	<i>t</i> (min)	<i>T</i> (°C)	Conversion/%	HMF yield/%
1	Glucose	MASZN-1	300	120	81.2	12.8
2	Glucose	MASZN-2	300	120	84.3	21.5
3	Glucose	MASZN-3	300	120	83.6	12.8
4	Glucose	MASZN-4	300	120	80.4	20.3

[a] Conditions: glucose (1 mmol), each catalyst is 10mg; solvent [AMIM]Cl (3 mL).

Table S2. The effect of solvent.^[a]

Entry	Solvent	Conversion(%)	HMF Yield(%)		
1	DMF	73.9	35.4		
2	NMP	78.5	43.6		
3	DMA	64.8	22.8		
4	H ₂ O	43.7	8.5		

[a] Reaction conditions: fructose (1 mmol), Catalyst MASZN-3 (10 mg), solvent (3mL), T=110 °C, t=120 min.

Table S3. Fructos	e dehydration	in various	catalytic systems.

Entry	Catalysis	Solvent	t (min)	Т (°С)	Conversion (%)	HMF Yield(%	Ref.
1	Bifunctional SO ₄ /ZrO ₂	water	360	100	25.4	8.28	32
2	TESAS-SBA-15	MIBK-2-butanol	141	130	84	71	27
3	MIL-101(Cr)-SO ₃ H	DMSO	60	120	99	90	28
4 5	a-CSS MASZN-3	[BMIM][Cl] DMSO	10 120	80 110	 98.5	83 91.9	31 [a]

[a]:In our reasearch.

3. Supporting figures

Figure S1. TPD-NH₃ profile over self-assembled mesoporous sulfated zirconia material

(MASZN-3).

Figure S2. N₂ adsorption/desorption isotherms of A) calcined samples a) MAZN-1, b) MAZN-2, c) MAZN-3, and d) MAZN-4 ; B) calcined mesoporous sulfated samples a) MASZN-1, b) MASZN-2, c) MASZN-3, and d) MASZN-4 measured at 77 K. Adsorption points are marked by filled circles and desorption points by empty circles.

Figure S3. BJH pore size distribution curves of A) calcined samples a) MAZN-1, b) MAZN-2, c)

MAZN-3, and d) MAZN-4; B) calcined mesoporous sulfated samples a) MASZN-1, b) MASZN-2,

c) MASZN-3, and d) MASZN-4.

Figure S4. FTIR spectra of the mesoporous ZrO₂ samples: (a) MAZN-1, (b) MAZN-2, (c) MAZN-3 and (d) MAZN-4.

Figure S5. ¹H NMR spectra of synthetic HMF.

Figure S6. Standard curve of authentic HMF in H₂O.