Supplementay information

An electrogenerated chemiluminescence biosensor based on g- C_3N_4 -hemin nanocomposite and hollow gold nanoparticles for the detection of lactate

Hongmei Chen^a, Xingrong Tan^b, Juanjuan Zhang^a, Qiyi Lu^a, Xin Ou^a, Yuan Ruo^{*a}, Shihong Chen^{*a}

Fig. S1 Effect of (A) luminol concentration and the incubation time of (B) HGNPS and (D) LOX on the ECL response of the biosensor to 0.028 mM lactate in 0.10 M PBS (pH 7.4). (C) Effect of pH on the ECL response of the biosensor to 0.028 mM lactate in 0.10 M PBS. Scan rate: 0.50 V/s.

Fig. S2 (A) ECL profiles of (a) bare GCE, (b) $g-C_3N_4/GCE$, (c) $g-C_3N_4$ -hemin/GCE and (d) HGNPs/ $g-C_3N_4$ -hemin/GCE in 0.10 M PBS (pH 7.4) containing 0.30 mM luminol and 0.063 mM H₂O₂. (B) ECL responses of $g-C_3N_4/GCE$ in 0.10 M pH 7.4 PBS under the scanning potential in the range of -2.0~ 2.0 V. Scan rate: 0.50 V/s.

Fig. S3 Stability of the biosensor in the presence of 0.028 mM lactate in 0.10 M pH 7.4 PBS. Scan rate: 0.50 V/s.

Table 1.	Comparison of	different methods	for the determination of lactate
	-		

Electrode	Determinatio	Linear range	Detection	Reference
materials	n method	(mM)	limit (mM)	
NADH/LDH/	Amperometry	0.2–2		1
Nano-				
CeO ₂ /GCE				
PDDA/LOD/	Amperometry	0.2–2.0	0.006	2
ZnO/MWCN				
Ts				
LOD/mucin/a	Amperometry	2×10-3-1	8×10-4	3
lbumin				
hydrogel				
matrix				
LOX/cupric	Fluorimetry	8×10 ⁻⁴ -8×10 ⁻²	4.5×10 ⁻⁵	4
oxide				
nanoparticles				

References:

- 1 N. Nesakumar, S. Sethuraman, U.M. Krishnan, J.B.B. Rayappan, J. Colloid. Interf. Sci., 2013, 410, 158-164.
- Y.T. Wang, L. Yu, J. Wang, L. Lou, W.J. Du, Z.Q. Zhu, H. Peng, J.Z. Zhu, *J Electroanal Chem*, 2011, 661, 8-12
- 3 M. R. Romero, F. Ahumada, F. Garay, and A. M. Baruzzi, Anal. Chem. 2010, 82, 5568-5572
- 4 A. L. Hu, Y. H. Liu, H. H. Deng, G. L. Hong, A. L. Liu, X. H. Lin, X. H. Xia, W. Chen, *Biosens Bioelectron*, 2014, **61** 374-378.