Electronic Supplementary Information

A highly selective and sensitive fluorescence "turn-on" fluoride ion sensor

Qi Lin,* Qing-Ping Yang, Bin Sun, Jin-Chao Lou, Tai-Bao Wei*, You-Ming Zhang*

E-mail: linqi2004@126.com, * zhangnwnu@126.com*

Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China

Contents

Materials and instruments and General proceduresS2
Figure S1
Figure S2, Figure S3S4
Figure S4, Figure S5S5
Figure S6, Figure S7S6
Figure S8, Figure S9S7
Figure S10S8

^{*} Corresponding author

Tel: +8609317973120. E-mail address: <u>linqi2004@126.com</u>, zhangnwnu@126.com

Materials and instruments and General procedures

Materials and instruments

All reagents and starting materials were obtained from commercial suppliers and used as received unless otherwise noted. F⁻, Cl⁻, Br⁻, I⁻, AcO⁻, H₂PO₄⁻, HSO₄⁻, ClO₄⁻, were used as the thetetrabutylammonium (TBA) salts and the SCN⁻ and CN⁻ ions were used as the sodium salts. Nuclear magnetic resonance (NMR) spectra were recorded on Varian Mercury 400. Mass spectra were recorded on a Bruker Esquire 6000 MS instrument. Fluorescence spectra were recorded on a Shimadzu RF-5301PC spectrofluorophotometer. Ultraviolet-visible (UV-vis) spectra were recorded on a Shimadzu UV-2550 spectrometer.

General procedure

1. General procedure for UV-vis experiments

All the UV-vis experiments were carried out on a Shimadzu UV-2550 spectrometer. Any changes in the UV-vis spectra of the synthesized sensors were recorded on the addition of F⁻ (measured 0.5 mL 0.1mol/L diluted to 0.01 mol/L). The host concentration was kept constant in all experiments.

2. General procedure for fluorescence experiments

All the fluorescence experiments were carried out on a Shimadzu RF-5301PC spectrofluorophotometer. Any changes in the fluorescence spectra of the synthesized sensors were recorded on the addition of F⁻ (measured 0.5 mL 0.1mol/L diluted to 0.01 mol/L). The host concentration was kept constant in all experiments.

3. General procedure for ¹H NMR titration

For ¹H NMR titrations, two stock solutions were prepared in DMSO- d_6 : one of them contained the host only, the second one contained a certain concentration of F⁻ (measured 0.5 mL 0.1mol/L diluted to 0.01 mol/L). Aliquots of the solutions were mixed directly in NMR tubes.

Fig. S1. ¹H NMR spectra of sensor **S** in DMSO- d_6 .

Figure S3. MS spectra of sensor S.

Fig. S4. Fluorescence spectra of sensor **S** (2.0×10^{-5} mol/L) recorded before and after reaction with F⁻ (0.01mol/L) (50 equiv). (Inset) Fluorescence changes of the probe **S** (2.0×10^{-5} mol/L) in the presence of 50 equiv of F⁻.

Fig. S5. Linear portion of the curve of fluorescence intensity at 467 nm of sensor S $(2.0 \times 10^{-5} \text{ mol/L})$ DMSO in the presence of F⁻.

Fig. S6. UV/vis absorption spectra of sensor S (2.0×10^{-5} mol/L) in DMSO in the absence and presence of 50 equiv F⁻.

Fig. S7. Absorption spectra of sensor **S** $(2.0 \times 10^{-5} \text{ mol/L})$ in DMSO upon addition of various (F⁻, Cl⁻, Br⁻, I⁻, AcO⁻, H₂PO₄⁻, HSO₄⁻, ClO₄⁻, as the thetetrabutylammonium (TBA) salts CN⁻ and SCN⁻; as the sodium salts, 50 equiv each) (0.01mol/L) in aqueous solution. (**Inset**) Color changes of the sensor **S** $(2.0 \times 10^{-5} \text{ mol/L})$ in the

presence of 50 equiv of (F⁻, Cl⁻, Br⁻, I⁻, AcO⁻, H₂PO₄⁻, HSO₄⁻, ClO₄⁻, CN⁻ and SCN⁻).

Fig. S8 Fluorescence intensity at 467 nm for **S** (2.0×10^{-5} mol/L) in DMSO after addition of F⁻ (0.01 M) in aqueous solution.

Fig.S9 Photographs of **S** on test papers (Left) only **S**, (Mid) after immersion into solution with F^- , (Right) after immersion into solutions with others in absence of F^- (**A**) under irradiation at 365 nm (B) under nature light.

Fig. S10. ¹H NMR spectra of sensor S in D_2O .