Supporting Information

Simple fabrication and electrochemical performance of porous and doubleshelled macroporous CuO nanomaterials with a thin carbon layer

Hyun Mee Kim
‡ a , Hyung-Seok Lim ‡ a , Yu-Jeong Kim
a, Yang-Kook Sun^b and Kyung-Do Suh * a

*corresponding author

[‡] These authors contributed equally to this work.

^{*a*} Division of Chemical Engineering, College of Engineering, Hanyang University, Seoul 133-791, Republic of Korea. E-mail: kdsuh@hanyang.ac.kr; Fax: +82-2-2220-4680; Tel: +82-2-2220-0526.

^{*b*} Division of WCU Engineering, College of Engineering, Hanyang University, Seoul 133-791, Republic of Korea. E-mail: yksun@hanyang.ac.kr; Tel: +82-2-2220-1749

Figure S1. (a) FT-IR spectrum, (b) SEM image of poly(MAA/EGDMA) microspheres and OM images of poly(MAA/EGDMA) microspheres dispersed in aqueous solutions pHs of (c) 6.44 and (d) 9.05.

b

		Porous type CuO		Double-shelled 3DOM CuO/C	
Element	Line Type	Wt%	Atomic %	Wt%	Atomic %
С	K series	4.57	10.33	5.50	12.25
0	K series	38.54	65.37	38.28	64.06
Cu	K series	56.89	24.30	56.22	23.69
Total		100.00	100.00	100.00	100.00

Figure S2. (a) EDX profiles of porous CuO/C and double-shelled 3DOM CuO/C and (b) element contents of C, O and Cu in two types of CuO/C samples.

Figure S3. XPS spectra of (a, b and c) porous CuO/C submicron spheres and (d, e and f) double-shelled 3DOM CuO/C: (a and d) Cu2p, (b and e), O1s and (c and f) C1s.

Figure S4. (a) Digital photograph of vials containing Cu aqueous solutions with different pHs (pH6~11) after adding $CuSO_4$ solution. (b) Size distribution of Cu precursors formed in aqueous solutions with different pHs.

Figure S5. Schematic illustration of polymer networks with Cu precursors in Cu precursors/poly(MAA/EGDMA) composite microspheres prepared under different pH conditions and FIB-SEM images of (a) porous CuO/C submicron spheres and (b) macroporous 3DOM CuO/C after heat treatment.

Figure S6. HR-TEM images at (a, d, g and j) low and (b, e, h, k, m, n and o) high magnifications and (c, f, i, and l) STEM images of Cu precursors/poly(MAA/EGDMA) composite microspheres prepared under different pH conditions: (pH 6.55: a, b and c), (pH7.44: d, e and f), (pH9.05: g, h and i), (pH 10.05: j, k and l) and (pH 11.21: m, n and o).

Figure S7. Cross-sectional(FIB-SEM) images of composite electrodes containing (a) porous Cu/O submicron spheres and (b) double-shelled 3DOM CuO/C after 100 cycles.

Figure S8. Electrochemical impedance spectroscopy (EIS) of the fresh cells containing (black square) porous CuO/C submicron spheres, (red circle) double-shelled 3DOM-CuO/C and (green triangle) commercial CuO nanoparticles.