Supporting Information

A facile fluorescence method for endonuclease detection using exonuclease III-aided signal amplification of molecular beacon

Chan Song,^{*a,b*} Qi Zhang,^{*a,b*} Gui-Mei Han,^{*a,b*} Yi-Chen Du^{*a,b*} and De-Ming Kong^{**a,b*}

^a State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China.

^b Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China.

E-mail: kongdem@nankai.edu.cn; Fax: (+86)-22-23502458; Tel: (+86)-22-23500938

Table S1	The oligonucleotid	les used i	n this	work

Oligonucleotides	Oligonucleotide Sequences (5' to 3')	
Hairpin substrate 1	TACGACGATGTCTGAGAATTCTC	
Hairpin substrate 2	TACGACGATGTCTGAGGATCCTCTTTTGAGGATCCTCAGACATCGTCGTAGCTTTTTTT	
MB	(DABCYL)- <u>CATCG</u> AAGCTACGACGATGTCTGA-(FAM)	

Fig. S1 Signal-to-noise (F/F_0) with different amounts of Exo III. F_0 and F are the fluorescence intensity in the absence and presence of 100 U mL⁻¹ EcoRI, respectively. [Hairpin substrate 1] = 100 nM, [MB] = 200 nM.

Fig. S2 Signal-to-noise (F/F_0) with different concentrations of **Hairpin substrate 1**. F_0 and F are the fluorescence intensity in the absence and presence of 100 U mL⁻¹ EcoRI, respectively. [**MB**] = 200 nM, [Exo III] = 2.0 U mL⁻¹.

Fig. S3 Signal-to-noise (F/F_0) with different concentrations of **MB**. F_0 and F are the fluorescence intensity in the absence and presence of 100 U mL⁻¹ EcoRI, respectively. [Hairpin substrate 1] = 100 nM, [Exo III] = 2.0 U mL⁻¹.

Fig. S4 Signal-to-noise (F/F_0) versus incubation time at 37 °C. F_0 and F are the fluorescence intensity in the absence and presence of 100 U mL⁻¹ EcoRI, respectively. [Hairpin substrate 1] = 100 nM, [MB] = 200 nM, [EcoRI] = 100 U mL⁻¹, [Exo III] = 2.0 U mL⁻¹.

Fig. S5 (A) Fluorescence enhancement and (B) signal-to-noise (F/F_0) of this sensing method at different incubation temperature. F_0 and F are the fluorescence intensity in the absence and presence of 100 U mL⁻¹ EcoRI, respectively. [Hairpin substrate 1] = 100 nM, [MB] = 200 nM, [EcoRI] = 100 U mL⁻¹, [Exo III] = 2.0 U mL⁻¹.