Supporting Information

SnO₂ decorated graphene nanocomposite anode materials prepared via an up-scalable wet-mechanochemical process for sodium ion battery

Sheng Li^a, Yazhou Wang^a, Jingxia Qiu^a, Min Ling^a, Haihui Wang^b, Wayde Martens^c, Shanqing Zhang^a*

^{*a*} Centre for Clean Environmental and Energy, Environmental Futures Research Institute, and Griffith School of Environment, Griffith University, Gold Coast, QLD 4222, Australia

^b College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China

^c Discipline of Nanotechnology and Molecular Science, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia

E-mail: <u>s.zhang@griffith.edu.au;</u>

Tel: +61-7-5552-8155

Fig .S1 HR-TEM images of SnO₂@graphene sample.