Electronic Supplementary Information (ESI)

Inhibiting Shuttle Effect in Lithium-Sulfur Battery using Layer-by-Layer Assembled Ion-Permselective Separator

Minsu Gu,^a Jukyoung Lee,^a Yongil Kim,^a Joon Soo Kim,^b Bo Yun Jang,^b* Kyu Tae Lee,^a*

and Byeong-Su Kim^{a,c}*

^a Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 689-798, Korea
^b Korea Institute of Energy Research (KIER), Daejeon 305-343, Korea

^c Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 689-798, Korea

E-mail: bskim19@unist.ac.kr

Figure S1. Contact angle and SEM images of a) bare PE and b) O₂-plasma treated PE separator.

Figure S2. Cyclic voltammograms (CV) of $(PAH/PAA)_n$ multilayer of (a-b) pH 6/3 and (d-e) pH 8.5/8.5 coated on ITO glass by LbL assembly in aqueous 0.5 M Na₂SO₄ neutral electrolyte solution containing 5.0 mM of (a, d) Ru(NH₃)₆³⁺ as the cationic and (b, e) Fe(CN)₆³⁻ as the anionic probes, respectively. Comparison of the anodic peak current density of each ion species at c) pH 6/3 and f) pH 8.5/8.5

Figure S3. a) Cationic retention and b) anionic retention of 1, 3, 5 BL of $(PAH/PAA)_n$ assembled at pH 3/3, 6/3, and 8.5/8.5.

Figure S4. Voltage versus specific discharge capacity profiles of the (PAH/PAA)₅ at a) pH 6/3 and b) pH 8.5/8.5.