Supporting Information

The Quest for Highly Fluorescent Chromophores: An Evaluation of 1H,3H-Isochromeno[6,5,4-mna]xanthene-1,3-dione (CXD)

Roza Al-Aqar, Daniel Avis, Andrew C. Benniston and Anthony Harriman

Molecular Photonics Laboratory, School of Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK

S1. Calculated bond lengths for CXD (top) and CXD ${ }^{-}$(middle) and $\mathbf{C X D}^{+}$(bottom).
S2. Comparison of recorded absorption spectrum for CXD in THF (black) and calculated (blue) using TD-DFT (B3LYP, $6-31 \mathrm{G}(\mathrm{d})$) in a THF solvent continuum. Bars depict calculated electronic transitions with selected molecular orbitals shown for (a) to (e). The number of the molecular orbital is shown and the square of the coefficient multiplied by two is given above the arrow.

S3. Absorption spectrum (black) and fluorescence spectrum (red) for CXD in toluene.
S4. Absorption spectrum (black) and fluorescence spectrum (red) for CXD in MeCN.
S5. Absorption spectrum (black) and fluorescence spectrum (red) for $\mathbf{C X D}$ in $\mathrm{Et}_{2} \mathrm{O}$.
S6. Absorption spectrum (black) and fluorescence spectrum (red) for CXD in propylene carbonate.

S7. Absorption spectra for JBD prepared in a thin film of PMMA (black) and for the dye after uptake into a PMMA polymer disc (red).

Strickler-Berg Expression

$$
\begin{equation*}
k_{R A D}=2.88 \times 10^{-9} n^{2} \frac{\int F(v) d v}{\int \frac{F(v) d v}{v^{3}}} \int \frac{\varepsilon(v) d v}{v} \tag{Eq.1}
\end{equation*}
$$

where $\mathrm{F}=$ fluorescence intensity at wavenumber $\mathrm{v}, \varepsilon=$ molar absorption coefficient and $\mathrm{n}=$ refractive index of the solvent.

S1. Calculated bond lengths for CXD (top) and CXD ${ }^{-}$(middle) and $\mathbf{C X D}^{+.}$(bottom).

(d)

(e)

S2. Comparison of recorded absorption spectrum for CXD in THF (black) and calculated (blue) using TD-DFT (B3LYP, 6-31G(d)) in a THF solvent continuum. Bars depict calculated electronic transitions with selected molecular orbitals shown for (a) to (e). The number of the molecular orbital is shown and the square of the coefficient multiplied by two is given above the arrow.

S3. Absorption spectrum (black) and fluorescence spectrum (red) for CXD in toluene.

S4. Absorption spectrum (black) and fluorescence spectrum (red) for CXD in MeCN.

S5. Absorption spectrum (black) and fluorescence spectrum (red) for CXD in $\mathrm{Et}_{2} \mathrm{O}$.

S6. Absorption spectrum (black) and fluorescence spectrum (red) for CXD in propylene carbonate.

S7. Absorption spectra for JBD prepared in a thin film of PMMA (black) and for the dye after uptake into a PMMA polymer disc (red).

