Electronic Supporting Information for

SnO₂@Co₃O₄ p-n heterostructures fabricated by electrospun and mechanism analysis enhanced acetone sensing

Shouli Bai^a, Haiyan Liu^a, Ruixian Luo^{a*}, Aifan Chen^a, Dianqing Li^a

^a State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China. E-mail: luorx@mail.buct.edu.cn.

Table S1 Absolute electronegativity (*X*), estimated band gap (E_g), energy levels of calculated conduction band edge (CB), and valence band edge (VB) for Fe₂O₃ and WO₃

	Х	$E_g(eV)$	CB	VB
			(eV)	(eV)
Co ₃ O ₄	5.93	2.94	-0.04	2.90
SnO_2	6.25	3.50	0	3.50

The band gap energy of Co_3O_4 was calculated by its UV-Vis absorption spectra (shown in Figure S1)

Figure S1. UV-Vis absorption spectra of Co_3O_4 (inset: the $(\alpha hv)^2$ -hv curves).

The UV-vis spectra of Co_3O_4 is shown in Figure S1. The band gap (E_g) engineering of Co_3O_4 can be calculated by the following Equation:

 $(\alpha hv)^2 = A(hv-Eg)$

Where α is the optical density, hv is the photon energy and A is a constant relative to the material. Therefore, the band gaps of Co₃O₄ estimated from the extrapolated intercept with the $\alpha = 0$ shown in Figure S1 inset are 1.78 eV and 2.94 eV. The first band can be assigned to the O^{2-→}Co³⁺ charge transfer (the Co³⁺ located below the conduction band), while the second one is ascribed to the O^{2-→}Co²⁺ charge transfer process.

Figure S2. Nitrogen adsorption–desorption isotherms of (a) Co_3O_4 (b) $SnO_2@Co_3O_4$ samples. As shown in Figure S2, the N₂ adsorption-desorption analysis of Co_3O_4 and $SnO_2@Co_3O_4$ samples were carried out to estimate their surface areas, which is an important parameters related to gas sensing properties, and they show similar N₂ adsorption-desorption isotherms. According to Brunauer-Deming-Deming-Teller (BDDT) classification, it is seen that the isotherms belong to Type IV with an H3 hysteresis loop, which are typical for mesoporous materials.