Pyridylphenyl appended imidazoquinazoline based ratiometric fluorescence "*turn-on*" chemosensor for Hg²⁺ and Al³⁺ in aqueous media

Amit Kumar, Rampal Pandey, Ashish Kumar, and Daya Shankar Pandey*

Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi - 221 005, India

Supporting Information Placeholder

Contents:

1.	Experimental Section	S2
2.	Fig. S1-S2 ¹ H and ¹³ C NMR Spectrum of 1	S4
3.	Fig. S3 ESI-Mass Spectrum of 1	S5
4.	Fig. S4 UV/vis spectra of 1	S5
5.	Fig. S5-S6 UV/vis and fluorescence spectra of 1 with various ions	S6
6.	Fig. S7 Ratiometric fluorescence response of 1 at 425 and 482 nm	S 8
7.	Fig. S8 Bar diagram showing the fluorescence intensity ratio (I_{482}/I_{425}) for 1	S 8
8.	Fig. S9 Job's plot Analysis for 1 with Hg^{2+} and Al^{3+}	S9
9.	Fig. S10-S11 LOD graph for 1 with Hg^{2+} and Al^{3+}	S9
10.	Fig. S12-S13 UV/vis and Fluorescence spectra in presence of EDTA	S10
11.	Fig. S14 UV/vis spectra in presence of interference of various metal ions	S11
12.	Fig. S15 Fluorescence spectra with the interference of various metal ions	S12
13.	Fig. S16 Bar diagram for 1 with Hg^{2+} and Al^{3+} and various metal ions	S12
14.	Fig. S17-18 Association constant by Benesi-Hildebrand for 1 with Hg^{2+}/Al^{3+}	S13
15.	Fig. S19 UV/vis and fluorescence titration spectra of 1 at various pH range	S14
16.	Fig. S20-S22 ¹ H NMR titration of 1 with Hg^{2+} and Al^{3+}	S14
17.	Fig. S23-S24 ESI-MS of 1 with Hg^{2+} and Al^{3+}	S17
18.	Fig. S25 Optimized structure of 1 and $1+Hg^{2+}$ and $1+Al^{3+}$ adducts	S18
19.	Table S1-S2 Comparison table for the fluorescent probes for Hg ²⁺ and Al ³⁺ ions	S19
20.	References	S21

Experimental section

Materials and methods

The common reagents and solvents were acquired from Merck, Qualigens and S. D. Fine Chem. Ltd, Mumbai. Solvents were dried and distilled following the standard procedures prior to their use.¹ 4-(pyridin-4-yl)benzaldehyde, 2-aminophenylbenzimidazole and metal nitrates *viz.*, NaNO₃, KNO₃, Ca(NO₃)₂·4H₂O, Mg(NO₃)₂·6H₂O, Al(NO₃)₂·9H₂O, Fe(NO₃)₃·9H₂O, Co(NO₃)₂·6H₂O, Ni(NO₃)₂·6H₂O, Cu(NO₃)₂·3H₂O, Zn(NO₃)₂·6H₂O, Cd(NO₃)₂·4H₂O, AgNO₃, Pb(NO₃)₂ and Hg(NO₃)₂·H₂O were obtained from commercial sources and used without further purifications.

Elemental analyses for C, H and N were performed on a CE-440 Elemental Analyzer. Infrared and electronic absorption spectra were obtained on a Perkin-Elmer Spectrum Version 10.03.05 FT-IR and Shimadzu UV-1601 spectrophotometers, respectively. ¹H (300 MHz) and ¹³C (75.45 MHz) NMR spectra were obtained on a JEOL AL300 FT-NMR spectrometer using tetramethylsilane (Si(CH₃)₄) as an internal reference. Fluorescence spectra were recorded on a PerkinElmer LS 55, Fluorescence Spectrometer (U.K.). Electrospray ionization mass spectrometric (ESI-MS) data were obtained on a JEOL Accu TOF JMS-T100 LC mass spectrometer.

Synthesis of 6-(4-(pyridin-4-yl)phenyl)-5,6-dihydrobenzo[4,5]imidazo[1,2-c]quinazoline (1)

An ethanolic solution of 4-(pyridin-4-yl)benzaldehyde (2.0 mmol, 10 mL) was added to a stirring solution of 2-(2-aminophenyl)-1-benzimidazole (2.0 mmol) dissolved in the same solvent (20 mL) and the contents of the flask was heated under reflux for 10 h. After cooling to ambient temperature, it was concentrated at reduced pressure to half its volume and kept undisturbed at rt. The microcrystalline compound thus obtained was separated by filtration, washed with cold ethanol followed by diethylether. Yield (0.605 g, 81%). Analytical data: calcd. $C_{25}H_{18}N_4$ (374.43): C, 80.19; H, 4.85; N, 14.96, Found: C, 80.09; H, 4.76; N, 14.85. FT-IR (KBr; cm⁻¹): 3219 (m), 1612 (s), 1597 (vs), 1533 (m), 1504 (vs), 1474 (vs), 1447 (m), 1405 (m), 1384 (s), 1320 (w), 1284 (vs), 1257 (m), 807 (s), 751 (s), 733 (vs). ¹H NMR (DMSO-*d*₆, 300 MHz, $\delta_{\rm H}$, ppm): 8.57 (d, 2*H*); 7.97 (d, 1*H*); 7.72-7.59 (m, 2H); 7.35-7.11 (m, 6*H*); 6.87–6.80 (m, 2*H*). ¹³C NMR (DMSO-*d*₆, 75 MHz, $\delta_{\rm C}$, ppm): 150.1, 146.8, 146.2,

143.8, 142.9, 141.4, 137.6, 132.8, 131.7, 127.3, 126.5, 124.6, 122.3, 122.1, 121.1, 118.7, 114.9, 111.80, 110.4, 67.1. HRMS (*m/z*): 375.1603 (calcd 375.1610); [M+H]⁺.

Absorption and Emission Studies

Stock solution of **1** for the electronic absorption/emission studies was prepared in EtOH/H₂O (1:99, v/v; *c*, 10 μ M). The solution of various metal ions (Na⁺, K⁺, Mg²⁺, Ca²⁺, Al³⁺, Fe³⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Cd²⁺, Hg²⁺, Ag⁺ and Pb²⁺) were prepared by dissolving their nitrate salts in triple distilled (TD) water (c; 10 mM). For the titration experiments 3.0 mL solution of **1** (10 μ M) was taken in a quartz cuvette (path length 1 cm) and solution of the metal ions were gradually added with the help of a micro pipette. In titration experiments time interval was maintained as 2 minute for addition of each fraction of metal ions to make a complete reaction between **1** and analytes.

Calculation of limit of detection (LOD)

Quantitative responses of **1** toward Hg²⁺ and Al³⁺ were investigated using linear calibration plots from fluorescence spectral studies. Dynamic range for determination of LOD for these ions has been found to be linear. The LOD has been evaluated using $3\sigma/s$, where σ is the standard deviation of the blank signals and *s* is the slope of the linear calibration plot.

Theoretical Calculation

Molecular structure of 1, $1+Hg^{2+}$ and $1+Al^{3+}$ were designed using ChemBioDraw Ultra software and 3D views of these structures were optimized by minimizing energy of the molecule using MM2 mode in the same software. The optimization and energy calculations for these were performed on Gaussian09 with a density functional theory (DFT) in the B3LYP mode in the ground state.²⁻³ The basis set 6-31G(d,p) has been used for all the light atoms (C, H, N, O) while LANL2DZ for the metal atoms (Al, Hg) with an effective-core pseudo-potential.⁴

Fig. S1 ¹H NMR spectrum with labelling of some characteristic protons of 1.

Fig. S2 ¹³C NMR spectrum of 1.

Fig. S3 ESI-Mass spectrum of 1.

Fig. S4 UV/vis and fluorescence spectra of 1.

Fig. S5 UV/vis (a) and fluorescence (b) spectral changes for **1** in presence of 10 equiv. of various metal ions *viz.*, Na⁺, K⁺, Mg²⁺, Ca²⁺, Al³⁺, Fe³⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Cd²⁺, Hg²⁺, Ag⁺ and Pb²⁺.

Fig. S6 UV/vis (a) and fluorescence (b) spectral changes for 1 in presence of 10 equiv. of various anions *viz*. F⁻, Cl⁻, Br⁻, I⁻, SO4²⁻, S²⁻, HSO4⁻, SO3²⁻, S₂O3²⁻, S₂O8²⁻, CO3²⁻, NO2⁻, NO3⁻ and PO4³⁻.

(a) (b)

Fig. S7 Ratiometric fluorescence response of 1 at 425 nm (blue star showing quenching behaviour), and 482 nm (red star showing enhancement) with the addition of Hg^{2+} (a) and Al^{3+} ions (b).

Fig. S8 Bar diagram showing the fluorescence intensity ratio (I_{482}/I_{425}) for **1** in absence (0) and presence of various metal ions *viz.*, [Na⁺, (1); K⁺, (2); Mg²⁺, (3); Ca²⁺, (4); Fe³⁺, (5); Co²⁺, (6); Ni²⁺, (7); Cu²⁺, (8); Zn²⁺, (9); Cd²⁺, (10); Ag⁺, (11); Al³⁺, (12); Hg²⁺, (13) and Pb²⁺, (14)].

Fig. S9 Job's plot analysis illustrating 1:1 stoichiometry for complex **1** with Hg²⁺ (a) and Al³⁺ (b) by the fluorescence spectra.

Fig. S10 Plot of Δ (I-I₀) *vs*. [Hg²⁺] with [1] = 10 µM for the calculation of lowest detection limit: plot for varying [Hg²⁺] of 0.0-1.0×10⁻⁵ M, (a); and same plot to show the lower concentration for Hg²⁺ which shows the linear part of the plot and is used for determining the lowest detectable concentration of Hg²⁺ (6.0 × 10⁻⁸) (b); and the LOD for Hg²⁺ has been calculated by standard analytical method using equation $3\sigma/s$ and found to be 1.69×10^{-8} M.

Fig. S11 Plot of Δ (I-I₀) *vs.* [Al³⁺] with [**1**] = 10 µM for the calculation of lowest detection limit: plot for varying [Al³⁺] of 0.0-1.0×10⁻⁵ M, (a); and same plot to show the lower concentration for Al³⁺ which shows the linear part of the plot and is used for determining the lowest detectable concentration of Al³⁺ (4.0 × 10⁻⁷) (b); and the LOD for Al³⁺ has been calculated by standard analytical method using equation $3\sigma/s$ and found to be 1.44×10^{-7} M.

Fig. S12 Reversibility and reusability of the probe 1 showing by absorption spectra of $1 + Hg^{2+}(a)$, and $1 + Al^{3+}(b)$ in presence and absence of EDTA (~10.0 equiv).

Fig. S13 Reversibility and reusability of the probe 1 showing by emission spectra of $1 + Hg^{2+}$ (a) and $1 + Al^{3+}$ (b) in presence and absence of EDTA (~10.0 equiv).

Fig. S14 UV/vis spectral changes for **1** with Hg^{2+} (a) and Al^{3+} (b) in presence of the interference of various metal ions *viz.*, Na⁺, K⁺, Mg²⁺, Ca²⁺, Al³⁺, Fe³⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Cd²⁺, Ag⁺ and Pb²⁺.

Fig. S15 Fluorescence spectral changes for $1 \cdot \text{Hg}^{2+}$ (a) and $1 \cdot \text{Al}^{3+}$ (b) in presence of the interference of various metal ions *viz.*, Na⁺, K⁺, Mg²⁺, Ca²⁺, Al³⁺, Fe³⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Cd²⁺, Ag⁺ and Pb²⁺.

Fig. S16 Bar diagram showing the fluorescence spectral changes at 482 nm for 1 with Hg²⁺ and Al³⁺ in presence of the interference of various metal ions *viz.*, Na⁺, K⁺, Mg²⁺, Ca²⁺, Al³⁺, Fe³⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Cd²⁺, Ag⁺ and Pb²⁺; [blue pyramid, 1; red cylinder, 1 + various metal ions; green cone, 1 + Hg²⁺ + other metal ions and purple rod, 1 + Al³⁺ + other metal ions].

Fig. S17 Benesi–Hildebrand plot for PPC and Hg²⁺ to calculate the binding constant (K_a= 4.12×10^4).

Fig. S18 Benesi–Hildebrand plot for PPC and Al³⁺ to calculate the binding constant (K_a=2.45 \times 10³).

Fig. S19 UV/vis (a) and Fluorescence (b) titration plot for 1 (c, 10 μ M) with 0.1 M HCl.

Fig. S20 ¹H NMR spectral titration showing the changes in absence (a) and presence of Hg²⁺ (1.0 equiv) (b), Al³⁺ (3.0 equiv) (c), and Hg²⁺ (1.0 equiv) added in the solution of $1+Al^{3+}$ (3.0 equiv) (d). *H*a (red star) and *H*d protons (blue star) showing the changes in presence of Hg²⁺ (1.0 equiv) and Al³⁺ (3.0 equiv).

Fig. S21 ¹H NMR spectral titration of **1** with various amount of $Hg^{2+}0.0$ equiv (a), 0.25 equiv (b), 0.50 equiv (c), 0.75 equiv (d), and 1.0 equiv (e). Arrow shows the changes mainly appeared in protons *H*a and *H*d. In the spectra proton *H*f is continually decreases and finally vanished (spectra a-e).

Fig. S22 ¹H NMR spectral titration of **1** with various amount of $Al^{3+}0.0$ equiv (a), 0.50 equiv (b), 1.0 equiv (c), 2.0 equiv (d), and 3.0 equiv (e). Arrow shows the changes appeared in protons *H*d, *H*e and *H*f.

Fig. S23 ESI-MS of the $(1 + Hg^{2+})$ adduct.

Fig. S24 ESI-MS of the $(1 + Al^{3+})$ adduct.

Fig. S25 Optimized structure of **1** (a), **1**+Hg²⁺ monomer unit (b), **1**+Hg²⁺ polymeric structure (c), and **1**+Al³⁺ (d).

constant (M)(M)Imidazo-quinazoline 6-(4- (pyridin-4-yl)-phenyl)-5,6- dihydrobenzo- [4,5]imidazo-[1,2-c] quinazoline (1)Ratiometric Fluorescence "turn on" Hg^{2+}, Al^{3+} 4.12×10^4 1.69×10^{-8} Present manuscript[4,5]imidazo-[1,2-c] quinazoline (1)"turn on"Image: second secon	Probe		Selectivity	Binding	LOD	Reference
Imidazo-quinazoline6-(4- RatiometricRatiometric Hg^{2+}, Al^{3+} 4.12×10^4 1.69×10^{-8} Present manuscript(pyridin-4-yl)-phenyl)-5,6- dihydrobenzo- [4,5]imidazo-[1,2-c] quinazoline (1)Fluorescence turn on"11116-Ferrocenyl-5,6- dihydro[4,5]imidazo[1,2-Fluorescence turn off"Hg^{2+}1.39 × 10^4Not given 2012,Inorg. Chem. 2012,				constant	(M)	
Imidazo-quinazonine6-(4-Katiometric Hg^{2+} , AI^{3+} 4.12×10^4 1.69×10^{-6} Present(pyridin-4-yl)-phenyl)-5,6-Fluorescence"turn on"anuscriptmanuscript[4,5]imidazo-[1,2-c]"turn on"1.39 \times 10^4Not givenInorg. Chem.dihydro[4,5]imidazo[1,2-"turn off"1.39 \times 10^4Not given2012,		Detiensetuie	TT - 2+ A 13+	(M^{-1})	1.60 × 10-8	Duccout
(pyridin-4-yl)-phenyl)-5,6- dihydrobenzo- [4,5]imidazo-[1,2-c] quinazoline (1)Fluorescence $underscence$ manuscript $underscence$ 6-Ferrocenyl-5,6- dihydro[4,5]imidazo[1,2-Fluorescence $underscence$ Hg ²⁺ 1.39 × 104Not given 2012,	Imidazo-quinazoline 6-(4-	Ratiometric	Hg^{2+}, Al^{3+}	4.12×10^{4}	1.69 × 10 °	Present
dihydrobenzo- [4,5]imidazo-[1,2-c] quinazoline (1)"turn on"Image: constraint of the second s	(pyridin-4-yl)-phenyl)-5,6-	Fluorescence				manuscript
[4,5]imidazo- $[1,2-c]$ quinazoline (1) $[4,5]$ imidazo- $[1,2-c]$ quinazoline (1) $[4,5]$ midazo- $[1,2-c]$ <td< td=""><td>dihydrobenzo-</td><td>"turn on"</td><td></td><td></td><td></td><td></td></td<>	dihydrobenzo-	"turn on"				
quinazoline (1)Image: constraint of the second	[4,5]imidazo-[1,2-c]					
6-Ferrocenyl-5,6- dihydro[4,5]imidazo[1,2-Fluorescence "turn off" Hg^{2+} 1.39×10^4 Not givenInorg. Chem.2012,	quinazoline (1)					
dihydro[4,5]imidazo[1,2- <i>"turn off"</i> 2012,	6-Ferrocenyl-5,6-	Fluorescence	Hg ²⁺	1.39 × 10 ⁴	Not given	Inorg. Chem.
	dihydro[4,5]imidazo[1,2-	"turn off"				2012,
c]-quinazoline (4) 51,298–311	c]-quinazoline (4)					51 ,298-311
Thiophen-2-yl-5,6-Fluorescence Hg^{2+} 0.004×10^4 2.0×10^{-7} Tetrahedron	Thiophen-2-yl-5,6-	Fluorescence	Hg ²⁺	0.004×10^4	2.0×10^{-7}	Tetrahedron
dihydrobenzo[4,5]imidazo["turn off" Lett., 2012, 53,	dihydrobenzo[4,5]imidazo["turn off"				<i>Lett.</i> , 2012, 53 ,
1,2-c]quinazo- line (1) 3550-3555	1,2-c]quinazo- line (1)					3550-3555
$Compound OC$ Elucroscoppo Ha^{2+} 7.14×104 0.5×10^{-6} <i>Cham</i>	Compound OC	Fluorogaanaa	U ₂ ⁺	7.14×104	0.5×10^{-6}	Cham
$\begin{array}{c} \text{Compound} \textbf{QG} \\ \text{Fluorescence} \\ \text{Hg}^2 \\ \text{Hg}^2 \\ \text{Fluorescence} \\ \text{Hg}^2 \\ H$	Compound QG		ng-	/.14 ^ 10	0.3 ~ 10 *	Chem.
turn on Commun.,		turn on				Commun.,
2006, 4392-						2006, 4392–
4394.						4394.
Bispyrene based receptor Fluorescence Hg^{2+} 3.38 × 10 ¹⁰ 7.08 × 10 ⁻⁶ Analyst. 2010.	Bispyrene based receptor	Fluorescence	Hg ²⁺	3.38×10^{10}	7.08×10^{-6}	Analyst, 2010.
"turn on"		"turn on"			,	135 1600–
						1605
						1005
Naphthalimide substituted Fluorescence Hg^{2+} Not given 3×10^{-8} Chem. Eur. J.	Naphthalimide substituted	Fluorescence	Hg ²⁺	Not given	3 × 10 ⁻⁸	Chem. Eur. J.
probe " <i>turn on</i> " 2012, 18 ,	probe	"turn on"				2012 , 18 ,
11188 – 11191						11188 - 11191
Tren-based rhodamine Fluorescence Hg^{2+} 1.59 × 10 ⁶ Not given <i>Org. Letts.</i> ,	Tren-based rhodamine	Fluorescence	Hg ²⁺	1.59×10^{6}	Not given	Org. Letts.,
derivative " <i>turn on</i> " 2007 9, 2501-	derivative	"turn on"				2007 9, 2501-
2504						2504
Nanhthalimida rhadamina Patiomatria Ha ²⁺ Nat given Nat given Org Pierral	Nanhthalimida rhadamina	Patiomatria	Ца ²⁺	Not given	Not given	Ong Diamal
has a dual 1 Elements and 1 Elements and 1 Elements and 1	hapitulaininue-mouainine-	Fluerer	11g-			Charles 2012
based dyad I Fluorescence Chem., 2012,	based dyad I	riuorescence				<i>Cnem.</i> , 2012,
10, 8076–8081		"turn on"				10, 8076-8081

Table S1 Comparison table for the fluorescent probes for the detection in Hg ²⁺	•

Table S2 Comparison table for the fluorescent probes for the detection in Al^{3+} .

Probe		Selectivity	Binding	LOD	Reference
			constant	(M)	
			(M ⁻¹)		
Imidazo-quinazoline 6-(4-	Ratiometric	Hg ²⁺ , Al ³⁺	2.45×10^{3}	1.44×10^{-7}	Present
(pyridin-4-yl)-phenyl)-5,6-	Fluorescence				manuscript
dihydrobenzo-[4,5]imidazo-	"turn on"				
[1,2-c] quinazoline (1)					
Rhodamine 6G derivative	Fluorescence	Al ³⁺	3.14×10^{5}	3.26×10^{-6}	Dalton Trans.,
(L)	"turn on"				2014, 43 ,
					12624-12632
					-
Tetrazole derivative (H ₂ L)	Fluorescence	Al ³⁺	1.02×10^4	5.86×10^{-6}	Dalton Trans.,
	"turn on"				2 014, 43 ,
					6429–6435
8-acetyl-7-hydroxy-4-	Fluorescence	Al ³⁺	-	-	Dalton Trans.,
methylcoumarin (AHMC)	"turn on"				2014, 43 ,
					2741–2743
Benzimidazole Salen (H ₂ L)	Fluorescence	Al ³⁺	8.08	3.3×10^{-6}	Inorg. Chem.
	"turn on"			(MeOH)	2014, 53 ,
				5.25×10^{-6}	3012- 3021
				(DMSO)	
Schiff-base derivatives (L)	Fluorescence	Al ³⁺	-	8.8×10^{-8}	Org. Biomol.
	"turn on"				<i>Chem.</i> , 2010,
					8 , 3751–3757

References:

- 1 D. D. Perrin, W. L. F. Armango and D. R. Perrin, *Purification of laboratory Chemicals*, Pergamon, Oxford, UK, 1986.
- 2 L. J. Bartolottiand and K. Fluchick, *In Reviews in Computational Chemistry*; K. B. Lipkowitz and D. Boyd, Ed. VCH: New York, 1996, 7, 187.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark,; J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian, Inc., Wallingford CT*, 2009.
- 4 (a) P. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270; (b) W. R. Wadt and P. Hay, J. Chem. Phys., 1985, 82, 284; (c) P. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299.